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Problem 1 - Exponential distribution and Numerical integration

The exponential distribution, 𝑋 ∼ Expon(𝛽) has (probability) density function

𝑓(𝑥) = 1
𝛽 𝑒− 𝑥

𝛽 for 𝑥 ≥ 0

In this parameterization, the parameter 𝛽 is called a scale parameter, and here 𝔼(𝑋) = 𝛽.
This is the parameterization used in the course book.

R (and Wikipedia) instead uses the alternative parameterization with a rate parameter 𝜆 and
the density function

𝑓(𝑥) = 𝜆𝑒−𝜆𝑥 for 𝑥 ≥ 0.

In this parameterization 𝔼(𝑋) = 1
𝜆 . So, the connection between the two parameterization is

that 𝜆 = 1
𝛽 .

We will use the parameterization in the course book with the scale parameter 𝛽. If you want to
simulate 10 random numbers from the 𝑋 ∼ Expon(𝛽) with 𝛽 = 2 you have to use the command
rexp(n = 10, rate = 1/2), since 𝛽 = 2 implies 𝜆 = 1/2. The names of the arguments can
be left out so rexp(10, 1/2) also works (but then you have to write the arguments in that
exact order).
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Problem 1a)

A good way to check which parameterization is actually used in a given programming language
is to simulate a large number of random numbers (also called draws) from the distribution
and then compute the usual sample mean

̄𝑥 = 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑖

of those random numbers. According to the law of large numbers, this sample mean should
be close to the “theoretical”/population mean of 𝔼(𝑋) in the given parameterization.

Simulate 𝑛 = 10000 random numbers from the exponential distribution with rate 𝜆 = 2 to
verify that R is indeed using the rate parameterization.

Problem 1b)

Simulate 200 draws (random numbers) from the 𝑋 ∼ Expon(𝛽 = 2) distribution. Plot a
histogram of the draws (use 30 histogram bins/cells) and overlay the theoretical probability
density function (pdf) for the Expon(𝛽 = 2) distribution as a curve. Note that you have to
use the argument freq=FALSE in the hist function, otherwise the vertical scale will be counts
within each bin in the histogram, and you want really want the height of the histogram bars
to represent the density.
[Hint: evaluate the dexp density function over a fine grid of 𝑥-values to plot the pdf.]

Problem 1c)

Overlay two more pdf curves: one for Expon(𝛽 = 1) and the other for Expon(𝛽 = 3). Use
different colors. Which of the three pdf curves fit the data (histogram) best? Why do you
think that is?

Problem 1d)

The empirical cumulative density function (cdf) from a sample with 𝑛 observations is given
by

̂𝐹𝑛(𝑥) = number of elements in the sample ≤ 𝑥
𝑛

Plot the empirical cdf for the 𝑛 = 200 observations that you simulated in Problem 1b); see
https://en.wikipedia.org/wiki/Empirical_distribution_function for a little information
about the empirical cdf, if you are curious. Overlay the cdf from the three distributions above:
Expon(𝛽 = 1) , Expon(𝛽 = 2) and Expon(𝛽 = 3). Which distribution seems to fit best? Does
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it match with your conclusion from Problem 1c)?
[Hint: the sort function might be handy for the empirical cdf, and don’t forget about the so
called p-functions in R.]

Problem 1e)

Compare the sample median from the 𝑛 = 200 observations to the theoretical medians for each
of the above three distributions. Explain both how:

• a sample median is defined and

• how a median of a statistical distribution is defined.

[Hint: recall the so called q-functions in R].

Problem 1f)

Verify by numerical integration that the Expon(𝛽 = 2) density in R really fulfills the required
property of any density ∫∞

−∞ 𝑓(𝑥)𝑑𝑥 = 1. This entails doing a rectangle sum approximation as
in the definition of the integral in Lecture 2 (do not use a built-in function or a package for
numerical integration). Start with a rectangle width of Δ𝑥 = 0.5 and then lower it until the
integral seems to have converged.

Problem 1g)

Compute the expected value of the exponential distribution with 𝛽 = 2 using numerical inte-
gration, i.e. using similar technique as in Problem 1f). Verify your result from the rectangle
sum by using R’s built in numerical integration routine integrate (see ?integrate for the
documentation).
(Here we actually know the result, the expected value of Expon(𝛽) is 𝛽, but numerical in-
tegration technique can be used for the expectation of any function, for example if you are
interested in 𝔼(log(𝑋)), when 𝑋 ∼ Expon(𝛽)).
[Hint1: note that integrate requires the function f(x) to be integrated as input argument, so
you have to define such a function before calling the integrate function. To remind you of how
functions are written in R, a toy function in R is given below.]
[Hint2: don’t forget that I asking you to compute the expected value, not just to integrate the
density function]

# Just a toy function to show how functions are implemented in R.
myCubicFunction <- function(x){

y = x^3
return(y)
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}
myCubicFunction(3)

[1] 27

Problem 2 - Probability models for count data

Problem 2a)

The file bugs.csv contains a dataset with the number of bugs and some other explanatory
variables for 𝑛 = 91 releases of several software projects. Here we will only analyze the variable
nBugs, which we will store in a vector y, for simplicity. Load the data like this:

data = read.csv("https://github.com/StatisticsSU/STM/raw/main/assignment/bugs.csv",
header = TRUE)

y = data$nBugs # number of bugs, a vector with n = 91 observations

You can ignore that some of the observations actually comes from the same project at dif-
ferent releases, and assume that the observations are independent and identically distributed.
Consider first the model

𝑌1, 𝑌2, … , 𝑌𝑛
𝑖𝑖𝑑∼ Poisson(𝜆)

where 𝑛 = 91 here and 𝑖𝑖𝑑∼ means that the observations are assumed independent and identi-
cally distributed (that is, each observation is assumed to come from the same Poisson distri-
bution).

Since 𝜆 is the mean in the Poisson(𝜆) distribution, a reasonable estimator of 𝜆 is the sample
mean ̄𝑦. Plot a histogram of the data and overlay the density of Poisson distribution with
𝜆 = ̄𝑦. Does this Poisson model fit the data well. If not, why?

[Hint: either use a histogram when plotting the data, or use proportions(table(y)) to
compute a table of proportions and then use barplot to plot a bar chart, which is suitable for
discrete data. A histogram is easier, however.]
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Problem 2b)

Let us now try to with a negative binomial model for the data. We will use the variant
that counts the number of failures until 𝑟 successes has been observed, and we will use the
alternative parameterization with an explicit parameter 𝜇 for the mean. So the model is

𝑌1, 𝑌2, … , 𝑌𝑛
𝑖𝑖𝑑∼ NegBin(𝑟, 𝜇),

where each random variable 𝑌𝑖 can take on values in the set {0, 1, 2, …}. Since 𝜇 is the mean,
we will estimate it with the sample mean ̄𝑦. Add the probability function from the negative
binomial model for three different 𝑟 values: 𝑟 = 1, 𝑟 = 3 and 𝑟 = 100 (one curve for each) to
the plot you did in Problem 2a). Which of these models do you prefer? Why? Which of the
negative binomial models is closest to the Poisson model? Why?

[hint: note that R has the dnbinom function that can be called with the mean parameterization.
For example, dnbinom(1, size = 3, mu = 2) give the probability Pr(𝑌 = 1) when 𝑌 ∼
NegBin(𝑟 = 3, 𝜇 = 2), so that the argument size is the parameter 𝑟.]

Problem 3 - Transforming random variables

Problem 3a)

This problem is to be done after Lecture 6.

Let 𝑋 ∼ Normal(𝜇 = 0, 𝜎2 = 1). We are now interested in the distribution of 𝑌 = exp(𝑋).
Obtain the distribution for 𝑌 by simulating 10000 draws. Plot a histogram with 100 bins.

Problem 3b)

Use the method of transformation (Section 6.4 in the course book) to show that the probability
density for 𝑌 is given by

𝑓(𝑥) = 1√
2𝜋𝑥 exp ( − 1

2(log(𝑥) − 𝜇)2)

Overlay a plot of this density in the histogram from Problem 3a).

[hint: you can use LaTeX to write math in Quarto file (Google it), but it is also OK to just
do the math on paper, take a photo and include the photo]
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Problem 3c)

Use (Monte Carlo) simulation with 𝑚 = 10000 random draws to estimate E(𝑌 ), where, as
before, 𝑌 = exp(𝑋) and 𝑋 ∼ Normal(𝜇 = 0, 𝜎2 = 1). Check the convergence of the estimate
by plotting the sequential Monte Carlo estimates for increasing Monte Carlo sample sizes
of 10, 20, 30, … , 9900, 10000. Does the estimate seem to converge (settle down) to the true
expectation, which happens to be E(𝑌 ) = exp(1

2)? [How do I know that this is the true
expected value? See this: https://en.wikipedia.org/wiki/Log-normal_distribution]
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