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Note

This is the second part of the home assignment for the course. The first part had Problems
1-3, so I will continue with this numbering, and the first problem here will therefore be
Problem 4.

Problem 4 - Linear regression in vector form

Problem 4a)

Let 𝑎 = (1, 0, 2)⊤ and 𝑏 = (1, 0, −1)⊤ be two vectors. The dot product is computes in R as

a = c(1,0,2)
b = c(1,0,-1)
a%*%b

[,1]
[1,] -1
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Note that R returns the dot product as a matrix (with one row and one column) even though
it is a scalar (a number). If you really want a number you can do return the first (and only)
element like this:

(a%*%b)[1]

[1] -1

Are 𝑎 and 𝑏 orthogonal?

Problem 4b)

Simulate a 10 × 3 matrix 𝑋 with standard normal N(0,1) random variables. Let 𝛽 = (1, 1, 2)⊤

be a vector. Compute the matrix-vector product 𝜇 = 𝑋𝛽. When you code this, use the
variable name mu for 𝜇 and b for 𝛽. Explain how the first element of 𝜇 relates to the elements
in 𝑋.

Problem 4c)

Now simulate a vector of errors 𝜀 (use the variable name epsilon) from a normal distribution
with mean zero and standard deviation 𝜎 = 0.1. Compute the vector of response observations
𝑦 = 𝑋𝛽 + 𝜀. Compute the least squares estimate 𝛽̂ = (𝑋⊤𝑋)−1𝑋⊤𝑦 based on the simulated
𝑋 and 𝑦.

Problem 4d)

The variance of the errors in 𝜀 can be estimated from the vector of residuals 𝑒 = 𝑦 − 𝑋𝛽 as
follows

𝑠2 = 𝑒⊤𝑒
𝑛 − 𝑝

This is the same residual variance formula as you used in the previous statistics course, where
it was written using sums instead of vectors

𝑠2 = ∑𝑛
𝑖=1 𝑒2

𝑖
𝑛 − 𝑝

The covariance matrix of the least squares ̂𝛽 estimator can be estimated by the matrix for-
mula
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𝑠2(𝑋⊤𝑋)−1

and the standard errors for each ̂𝛽 is therefore the square root of the diagonal elements of this
covariance matrix. Compute the standard errors of the regression coefficients based on the 10
observations that you simulated in Problems 4c).

Problem 5 - Numerical maximum likelihood for negative binomial distribution

Problem 5a)

We continue with the bugs data from the first part of the Assignment. The file bugs.csv
contains a dataset with the number of bugs and some other explanatory variables for 𝑛 = 91
releases of several software projects. We load the data:

data = read.csv("https://github.com/StatisticsSU/STM/raw/main/assignment/bugs.csv",
header = TRUE)

y = data$nBugs # response variable: the number of bugs, a vector with n = 91 observations
X = data[,-1] # 91 x 5 matrix with covariates
X = as.matrix(X) # X was initial a data frame, but we want it to be matrix

In this problem you will learn to find the maximum likelihood estimate numerically for models
with a single parameter. We will only use the response variable 𝑦, the number of bugs. Later
in this assignment we will also use the covariates/features in matrix X.

We use the negative binomial again, but this time we try to estimate the parameter 𝑟 given
that the mean parameter 𝜇 is fixed at the estimate ̂𝜇 = ̄𝑦 ≈ 5.2528. So the model is

𝑌1, 𝑌2, … , 𝑌𝑛
𝑖𝑖𝑑∼ NegBin(𝑟, 𝜇 = 5.2528)

and your task is to find the maximum likelihood estimate ̂𝑟 of the parameter 𝑟 > 0 using
numerical maximization in R. Set the argument lower to some small, but positive value, for
example lower = 0.0001. lower = 0 will not work since the negative binomial distribution
with 𝑟 = 0 is not defined.

Problem 5b)

What is the standard error of the ML estimate ̂𝑟 in Problem 5a)? Recall that the standard
error is the standard deviation in the sampling distribution of an estimator. An approximate
answer is enough, and you can obtain it numerically (no maths needed!).
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Problem 5c)

Let us now try to estimate both parameters 𝜇 and 𝑟 at the same time (jointly, as we say)
using the maximum likelihood method. Use numerical maximization again and set lower =
c(0.0001, 0.0001) to make sure that the estimated parameters are positive, as they should be
in the negative binomial distribution.

Problem 5d)

Compute the standard errors for ̂𝑟 and for ̂𝜇.

Problem 6 - Regression models for count data

Ok, now we make this more interesting by modeling the expected number of bugs as function
of covariates/features in the X matrix loaded above:

• intercept - this is columns of ones to model the intercept

• nCommit - the number of commits since the last release of the software

• propC - proportion of C/C++ code in the project

• propJava - proportion of Java code in the project

• complexity - a measure of code complexity that takes into account the frequency of if
statements etc.

Problem 6a)

Use numerical optimization to fit the Poisson regression model

𝑌𝑖|𝑥𝑖
ind∼ Poisson(𝜆𝑖 = exp (𝑥⊤

𝑖 𝛽))

Note how each observation has its “own” 𝜆𝑖 parameter, which is modeled as the exponential
of 𝑥⊤

𝑖 𝛽. We use the exponential function to make sure that 𝜆𝑖 is always positive, as it has
to be in the Poisson model. Note that a Poisson regression is a model for the conditional
expectation

𝔼(𝑌𝑖|𝑥𝑖) = 𝜆𝑖 = exp (𝑥⊤
𝑖 𝛽) = exp (𝛽0 + 𝛽1𝑥1,𝑖 + … + 𝛽𝑝𝑥𝑝,𝑖).

The covariates/features for the 𝑖th observation 𝑥𝑖 = (𝑥1,𝑖, … , 𝑥𝑝,𝑖)⊤ is given the 𝑖th row of
the matrix X . For example, for the second observation we have y[2] = 6, so six bugs in the
second release, and the covariate values for this second release are:
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X[2,]

intercept nCommits propC propJava complexity
1.0000000 4.0000000 0.4150649 0.3295860 0.7031914

That is, this release (observation) has 4 commits, approximately 41.4% C code, 32.9 % Java
code and a Code Complexity of 0.7. The regression coefficients in 𝛽 = (𝛽0, 𝛽1, … , 𝛽4)⊤ measures
how the mean of the Poisson distribution 𝜆𝑖 changes when the features change. For example,
𝛽4 determines how sensitive the mean number of a bugs in a release is to the code complexity.
However, since 𝜆𝑖 is not a linear function of the features (as a result of the exponential function),
the 𝛽 coefficients cannot be interpreted as in ordinary linear regression; see the Lecture on
Poisson regression.

Ok, I can sense that you are eager to fit this model, so let’s do it! Use the bugs dataset to
compute the maximum likelihood estimate of 𝛽 = (𝛽0, 𝛽1, … , 𝛽4)⊤ with numerical optimization.
Note that since we have used the exponential function in the model, the elements of 𝛽 =
(𝛽0, 𝛽1, … , 𝛽4)⊤ are free to take on any value, also negative values. So you can use method =
c("BFGS") and there is no need to use the lower argument in optim.

Problem 6b)

Use the optimization output from the previous problem to get approximate standard errors
for each estimated 𝛽 coefficient. Compute 95% confidence intervals for each 𝛽 parameter.
Which covariates seem to be statistically different from zero? [Hint: use the large-sample
normal approximation of the sampling distribution, and use the confidence interval to check
the statistical significance.]

Problem 6c)

The upcoming release, which we here number as observation number 92, has the following
covariate vector:

x92 = c(1, 10, 0.45, 0.5, 0.89)

So, the release is based on 10 commits, good proportions of C and Java code and a high code
complexity of 0.89. What is the predicted number of bugs for this release?
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Bonus problem

Caution

This is a bonus problem. It is not very hard, but do it only if you feel up for it and have
energy left. You also need time to study for the exam. And to have a life. �

Consider the negative binomial regression

𝑌𝑖|𝑥𝑖
ind∼ NegBin(𝑟, 𝜇𝑖 = exp (𝑥⊤

𝑖 𝛽))

The parameters in this model is therefore 𝑟 and the regression coefficients in 𝛽. Find the
maximum likelihood estimates of the parameters using numerical optimization for the bugs
data. Note that you want to use lower = (0.0001, -Inf, -Inf, -Inf, -Inf, -Inf) here
to make sure that 𝑟 is positive and the regression coefficients are unrestricted.
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