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Arithmetics
Powers

For all real numbers 𝑥, 𝑦 and positive numbers 𝑎, 𝑏

• 𝑎𝑥𝑎𝑦 = 𝑎𝑥+𝑦

• 𝑎𝑥

𝑎𝑦 = 𝑎𝑥−𝑦

• (𝑎𝑏)𝑥 = 𝑎𝑥𝑏𝑥

• ( 𝑎
𝑏 )𝑥 = 𝑎𝑥

𝑏𝑥

• 1
𝑎𝑥 = 𝑎−𝑥

• (𝑎𝑥)𝑦 = 𝑎𝑥𝑦

• 𝑎0 = 1

• 𝑎 1
𝑛 = 𝑛√𝑎, where 𝑛 is a positive integer

Natural logarithm

For positive numbers 𝑥, 𝑦

• 𝑒𝑥 = 𝑦 ⟺ 𝑥 = ln(𝑦)

• ln(𝑥𝑦) = ln(𝑥) + ln(𝑦)

• ln ( 𝑥
𝑦 ) = ln(𝑥) − ln(𝑦)

• ln (𝑥𝑝) = 𝑝 ln(𝑥)

Some special functions
Factorial of positive integers 𝑛

𝑛! = 𝑛 ⋅ (𝑛 − 1) ⋅ (𝑛 − 2) ⋯ 2 ⋅ 1
and 0! = 1.

Gamma function
Properties of the Gamma function

Γ(𝑛) = (𝑛 − 1)! if 𝑛 is a positive integer
Γ(𝛼 + 1) = 𝛼Γ(𝛼) for any 𝛼 > 0

Derivatives
Derivatives of elementary functions

𝑘 and 𝑎 are constants.
• d

d𝑥 𝑘 = 0

• d
d𝑥 𝑥𝑛 = 𝑛𝑥𝑛−1

• d
d𝑥 𝑒𝑎𝑥 = 𝑎𝑒𝑎𝑥

• d
d𝑥 ln(𝑥) = 1

𝑥 , 𝑥 > 0

• d
d𝑥 𝑎𝑥 = 𝑎𝑥

ln𝑎

Derivatives of combined functions

𝑓 (𝑥) and 𝑔(𝑥) are differentiable functions, and 𝑘 a constant.
• Constant rule

d
d𝑥 (𝑘 ⋅ 𝑓 (𝑥)) = 𝑘 ⋅ 𝑓 ′(𝑥)

• Sum rule

d
d𝑥 (𝑓 (𝑥) + 𝑔(𝑥)) = 𝑓 ′(𝑥) + 𝑔′(𝑥)

• Product rule

d
d𝑥 (𝑓 (𝑥) ⋅ 𝑔(𝑥)) = 𝑓 ′(𝑥)𝑔(𝑥) + 𝑓 (𝑥)𝑔′(𝑥)

• Quotient rule

d
d𝑥 ( 𝑓 (𝑥)

𝑔(𝑥)) = 𝑓 ′(𝑥)𝑔(𝑥) − 𝑓 (𝑥)𝑔′(𝑥)

(𝑔(𝑥))
2

• Reciprocal rule

d
d𝑥 ( 1

𝑔(𝑥)) = − 𝑔′(𝑥)

(𝑔(𝑥))
2

• Chain rule for a composite function

d
d𝑥 𝑓 (𝑔(𝑥)) = 𝑓 ′(𝑔(𝑥)) ⋅ 𝑔′(𝑥)

Integrals
Anti-derivatives

𝐶 and 𝑘 are constants.
• ∫ 𝑥𝑛 d𝑥 = 1

𝑛+1 𝑥𝑛+1 + 𝐶, 𝑛 ≠ −1

• ∫ 𝑒𝑎𝑥 d𝑥 = 1
𝑎 𝑒𝑎𝑥 + 𝐶, 𝑎 ≠ 0

• ∫ 1
𝑥 d𝑥 = ln |𝑥| , 𝑥 > 0

Definite integral of 𝑓 (𝑥) from 𝑎 to 𝑏
𝑏

∫
𝑎

𝑓 (𝑥)d𝑥 = [𝐹(𝑥)]𝑏
𝑎 = 𝐹(𝑏) − 𝐹(𝑎)

Integrals of combined functions

𝑓 (𝑥) and 𝑔(𝑥) are integrable functions.
• Constant rule

∫ 𝑘 ⋅ 𝑓 (𝑥)d𝑥 = 𝑘 ⋅ ∫ 𝑓 (𝑥)d𝑥

• Sum rule

∫ (𝑓 (𝑥) + 𝑔(𝑥))d𝑥 = ∫ 𝑓 (𝑥)d𝑥 + ∫ 𝑔(𝑥)d𝑥

Combinatorics

Combinations and Permutations

How many ways can we choose 𝑘 elements
from 𝑛 elements?

with replacement without replacement
order 𝑛𝑘

𝑛𝑃𝑘 = 𝑛!
(𝑛−𝑘)!

no order not included 𝑛𝐶𝑘 = (𝑛
𝑘) = 𝑛!

(𝑛−𝑘)!𝑘!



Descriptive Statistics
Sample mean

̄𝑥 =
∑𝑛

𝑖=1 𝑥𝑖
𝑛

Sample Variance

𝑠2
𝑥 =

∑𝑛
𝑖=1(𝑥𝑖 − ̄𝑥)2

𝑛 − 1
Sample standard deviation

𝑠𝑥 = √𝑠2
𝑥

Sample covariance

𝑠𝑥𝑦 = Cov(𝑥, 𝑦) =
∑𝑛

𝑖=1(𝑥𝑖 − ̄𝑥)(𝑦𝑖 − ̄𝑦)
𝑛 − 1

Sample correlation

𝑟𝑥𝑦 = Corr(𝑥, 𝑦) =
𝑠𝑥𝑦

𝑠𝑥𝑠𝑦

Basic Probability
Addition Rule

𝑃(A ∪ B) = 𝑃(A) + 𝑃(B) − 𝑃(A ∩ B)
Multiplication Rule

𝑃(A ∩ B) = 𝑃(B|A)𝑃(A) = 𝑃(A|B)𝑃(B)
Law of Total Probability - basic version

𝑃(A) = 𝑃(A|B)𝑃(B) + 𝑃(A|B𝑐)𝑃(B𝑐)
where B𝑐 is the complement of B.

Law of Total Probability - general partition

𝑃(A) =
𝐾

∑
𝑘=1

𝑃(A|B𝑘)𝑃(B𝑘)

where B1, … ,B𝐾 is a partitioning of the sample space.

Bayes’ Theorem - basic version

𝑃(B|A) = 𝑃(A|B)𝑃(B)
𝑃(A)

Bayes’ Theorem - general partition

𝑃(B𝑘 |A) = 𝑃(A|B𝑘)𝑃(B𝑘)
𝑃(A)

Properties of One Random Variable

Expected value
If 𝑋 is a discrete variable with probability function 𝑝(𝑥)

𝜇 = 𝔼(𝑋) = ∑
all 𝑥

𝑥 ⋅ 𝑝(𝑥)

If 𝑋 is a continuous variable with density function 𝑓 (𝑥)

𝜇 = 𝔼(𝑋) = ∫
∞

−∞
𝑥 ⋅ 𝑓 (𝑥)d𝑥

Expected value of a function 𝑔(𝑋)
If 𝑋 is a discrete variable with probability function 𝑝(𝑥)

𝔼(𝑔(𝑋)) = ∑
all 𝑥

𝑔(𝑥) ⋅ 𝑝(𝑥)

If 𝑋 is a continuous variable with density function 𝑓 (𝑥)

𝔼(𝑔(𝑋)) = ∫
∞

−∞
𝑔(𝑥) ⋅ 𝑓 (𝑥)d𝑥

Variance
If 𝑋 is a discrete variable with probability function 𝑝(𝑥)

𝜎2 = 𝕍(𝑋) = ∑
all 𝑥

(𝑥 − 𝜇)2 ⋅ 𝑝(𝑥) = 𝔼(𝑋2) − 𝜇2

If 𝑋 is a continuous variable with density function 𝑓 (𝑥)

𝜎2 = 𝕍(𝑋) = ∫
∞

−∞
(𝑥 − 𝜇)2 ⋅ 𝑓 (𝑥)d𝑥 = 𝔼(𝑋2) − 𝜇2

Standard deviation

𝜎 = 𝕊(𝑋) = √𝕍(𝑋)

Expected value linear combination (𝑐 and 𝑑 are constants)

𝔼(𝑐 + 𝑑 ⋅ 𝑋) = 𝑐 + 𝑑 ⋅ 𝔼(𝑋)

Variance linear combination

𝕍(𝑐 + 𝑑 ⋅ 𝑋) = 𝑑2 ⋅ 𝕍(𝑋)

Distribution of a transformation
Let𝑋 be a continuous randomvariable and𝑌 = 𝑔(𝑋), where
𝑔(𝑥) is a monotone differentiable function with inverse func-
tion 𝑥 = 𝑔−1(𝑦). Then,

𝑓𝑌(𝑦) = 𝑓𝑋(𝑔−1(𝑦)) ⋅ ∣d𝑔−1(𝑦)
d𝑦 ∣

Properties of Two Random Variables
Expected value of a linear combination

𝔼(𝑐𝑋 + 𝑑𝑌) = 𝑐𝔼(𝑋) + 𝑑𝔼(𝑌)
Variance for a linear combination

𝕍(𝑐𝑋 + 𝑑𝑌) = 𝑐2𝕍(𝑋) + 𝑑2𝕍(𝑌) + 2𝑐𝑑Cov(𝑋, 𝑌)

Marginal distribution for 𝑋

If 𝑋 and 𝑌 are discrete variables with joint probability func-
tion 𝑝(𝑥, 𝑦), then the marginal distribution of 𝑋 is

𝑝𝑋(𝑥) = ∑
all 𝑦

𝑝(𝑥, 𝑦)

If 𝑋 and 𝑌 are continuous variables with joint density func-
tion 𝑓 (𝑥, 𝑦), then the marginal density of 𝑋 is

𝑓𝑋(𝑥) =
∞

∫
−∞

𝑓 (𝑥, 𝑦)d𝑦

Conditional distribution for 𝑌 given 𝑋

If 𝑋 and 𝑌 are discrete variables with joint probability func-
tion 𝑝(𝑥, 𝑦), then the conditional distribution of 𝑌 is

𝑝(𝑦 | 𝑥 ) = 𝑝(𝑥, 𝑦)
𝑝𝑋(𝑥) , 𝑝𝑋(𝑥) > 0

where 𝑝𝑋(𝑥) is the marginal distribution for 𝑋.

If 𝑋 and 𝑌 are continuous variables with joint density func-
tion 𝑓 (𝑥, 𝑦), then the conditional density of 𝑌 is

𝑓 (𝑦 | 𝑥 ) = 𝑓 (𝑥, 𝑦)
𝑓𝑋(𝑥) , 𝑓𝑋(𝑥) > 0

where 𝑓𝑋(𝑥) is the marginal density for 𝑋.

Law of iterated expectation

𝔼𝑌(𝑌) = 𝔼𝑋(𝔼𝑌|𝑋(𝑌|𝑋))

Covariance between two random variables X and Y
Cov(𝑋, 𝑌) = 𝔼((𝑋−𝔼(𝑋))(𝑌−𝔼(𝑌))) = 𝔼(𝑋𝑌)−𝔼(𝑋)𝔼(𝑌)
Covariance between two discrete random variables X and Y

Cov(𝑋, 𝑌) = ∑
all pairs (𝑥,𝑦)

𝑝(𝑥, 𝑦)(𝑥 − 𝔼(𝑋))(𝑦 − 𝔼(𝑌))

where 𝑝(𝑥, 𝑦) is the joint distribution of 𝑋 and 𝑌.

Correlation between two random variables X and Y

Corr(𝑋, 𝑌) = Cov(𝑋, 𝑌)
𝕊(𝑋) ⋅ 𝕊(𝑌)



Properties of the Sample Mean
Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent identically distributed
random variables with expected value 𝜇 = 𝐸(𝑋𝑖) and vari-
ance 𝜎2 = Var(𝑋𝑖). For the sample mean 𝑋𝑛 = ∑𝑛

𝑖=1 𝑋/𝑛
we have:

Expected value of the sample mean

E(𝑋𝑛) = 𝜇

Variance of the sample mean

Var(𝑋𝑛) = 𝜎2

𝑛

Law of Large Numbers

𝑋𝑛
𝑝→ 𝜇

where 𝑝→ is convergence in probability: for all 𝜖 > 0

𝑃(|𝑋𝑛 − 𝜇| > 𝜖) → 0 when 𝑛 → ∞

Central Limit Theorem (informally)

𝑋𝑛
approx∼ N(𝜇, 𝜎2

𝑛 ) for large 𝑛

Rule of Thumb: the approximation is accurate if 𝑛 ≥ 30.

Discrete Distributions

Bernoulli distribution 𝑋 ∼ Bernoulli(𝑝)

𝑝(𝑥) =
⎧{
⎨{⎩

𝑞 if 𝑥 = 0

𝑝 if 𝑥 = 1
𝔼(𝑋) = 𝑝
𝕍(𝑋) = 𝑝𝑞

where 𝑞 = 1−𝑝.

Geometric distribution 𝑋 ∼ Geom(𝑝)

𝑝(𝑥) = 𝑞𝑥𝑝 for 𝑥 = 0, 1, 2, …
𝔼(𝑋) = 1−𝑝

𝑝
𝕍(𝑋) = 1−𝑝

𝑝2

Binomial Distribution: 𝑋 ∼ Binomial(𝑛, 𝑝)

𝑝(𝑥) = (𝑛
𝑥)𝑝𝑥𝑞𝑛−𝑥 for 𝑥 = 0, 1, 2, … , 𝑛

𝔼(𝑋) = 𝑛𝑝
𝕍(𝑋) = 𝑛𝑝𝑞

Negative Binomial distribution: 𝑋 ∼ NegBin(𝑟, 𝑝)

𝑝(𝑥) = (𝑥+𝑟−1
𝑥 )𝑝𝑟𝑞𝑥−𝑟 for 𝑥 = 0, 1, 2, …

𝔼(𝑋) = 𝑟(1−𝑝)
𝑝

𝕍(𝑋) = 𝑟(1−𝑝)
𝑝2

Poisson Distribution: 𝑋 ∼ Pois(𝜆)

𝑝(𝑥) = 𝑒−𝜆𝜆𝑥

𝑥! for 𝑥 = 0, 1, 2, …
𝔼(𝑋) = 𝜆
𝕍(𝑋) = 𝜆

Continuous Distributions

Normal Distribution: 𝑋 ∼ N(𝜇, 𝜎2)

𝑓 (𝑥) = 1
√2𝜋𝜎2

e− 1
2𝜎2 (𝑥−𝜇)2

for − ∞ < 𝑥 < ∞

𝔼(𝑋) = 𝜇
𝕍(𝑋) = 𝜎2

If 𝑋 ∼ N(𝜇, 𝜎2) and 𝑌 = 𝑐 + 𝑑 ⋅ 𝑋 then

𝑌 ∼ 𝑁(𝑐 + 𝑑 ⋅ 𝜇, 𝑑2 ⋅ 𝜎2)

If 𝑋 ∼ N(𝜇, 𝜎2) then

𝑍 = 𝑋 − 𝜇
𝜎 ∼ 𝑁(0, 1)

https://observablehq.com/@mattiasvillani/bernoulli-distribution
https://observablehq.com/@mattiasvillani/geometric-distribution
https://observablehq.com/@mattiasvillani/binomial-distribution
https://observablehq.com/@mattiasvillani/negative-binomial-distribution
https://observablehq.com/@mattiasvillani/poisson-distribution
https://observablehq.com/@mattiasvillani/normal-gaussian-distribution


Uniform distribution: 𝑋 ∼ U(𝑎, 𝑏)

𝑓 (𝑥) = 1
𝑏−𝑎 , for − 𝑎 < 𝑥 < 𝑏

𝔼(𝑋) = (𝑎 + 𝑏)/2
𝕍(𝑋) = (𝑏 − 𝑎)2/12

Exponential distribution: 𝑋 ∼ Exp(𝛽)

𝑓 (𝑥) = 1
𝛽 𝑒− 𝑥

𝛽 , for 𝑥 ≥ 0
𝔼(𝑋) = 𝛽
𝕍(𝑋) = 𝛽2

Gamma distribution 𝑋 ∼ Gamma(𝛼, 𝛽)

𝑓 (𝑥) = 1
𝛽𝛼 Γ(𝛼)𝑥𝛼−1 𝑒−𝑥/𝛽, for 𝑥 ≥ 0

𝔼(𝑋) = 𝛼𝛽
𝕍(𝑋) = 𝛼𝛽2

𝜒2-distribution 𝑋 ∼ Chi2(𝜈)

𝑓 (𝑥) = 1
2𝜈/2Γ(𝜈/2)𝑥𝜈/2−1𝑒−𝑥/2 for 𝑥 ≥ 0

𝔼(𝑋) = 𝜈
𝕍(𝑋) = 2𝜈

Log-normal distribution 𝑋 ∼ LogNormal(𝜇, 𝜎2)

𝑓 (𝑥) = 1
𝑥√2𝜋𝜎2

e− 1
2𝜎2 (log(𝑥)−𝜇)2

for 0 < 𝑥 < ∞

𝔼(𝑋) = exp(𝜇 + 𝜎2/2)
𝕍(𝑋) = ( exp(𝜎2) − 1) exp(2𝜇 + 𝜎2)

Student 𝑡-distribution 𝑋 ∼ 𝑡(𝜈)

𝑓 (𝑥) = 1
2𝜈/2Γ(𝜈/2)𝑥𝜈/2−1𝑒−𝑥/2 for 𝑥 ≥ 0

𝔼(𝑋) = 0 if 𝜈 > 1
𝕍(𝑋) = 𝜈

𝜈−2 if 𝜈 > 2

Beta distribution 𝑋 ∼ Beta(𝛼, 𝛽)

𝑓 (𝑥) = 1
B(𝛼,𝛽)𝑥𝛼−1 (1 − 𝑥)𝛽−1, for 0 ≤ 𝑥 ≤ 1

𝔼(𝑋) = 𝛼
𝛼+𝛽

𝕍(𝑋) = 𝛼𝛽
(𝛼+𝛽)2(𝛼+𝛽+1)

where
B(𝛼, 𝛽) = Γ(𝛼) Γ(𝛽)

Γ(𝛼+𝛽)

Multivariate normal distribution

(𝑌1, 𝑌2, … , 𝑌𝑝)⊤ ∼ N(𝝁, 𝚺)

where 𝜇 is the 𝑝-element mean vector and Σ is the
𝑝 × 𝑝 covariance matrix.
In the bivariate case with 𝑝 = 2:

𝝁 = ⎛⎜⎜
⎝

𝜇1

𝜇2

⎞⎟⎟
⎠

𝚺 = ⎛⎜⎜
⎝

𝜎2
1 𝜌12𝜎1𝜎2

𝜌12𝜎1𝜎2 𝜎2
2

⎞⎟⎟
⎠

and 𝜌12 is the correlation between 𝑌1 and 𝑌2.

https://observablehq.com/@mattiasvillani/uniform-distribution
https://observablehq.com/@mattiasvillani/exponential-distribution
https://observablehq.com/@mattiasvillani/gamma-distribution
https://observablehq.com/@mattiasvillani/chi2-distribution
https://observablehq.com/@mattiasvillani/log-normal-distribution
https://observablehq.com/@mattiasvillani/student-t-distribution-standard
https://observablehq.com/@mattiasvillani/beta-distribution
https://observablehq.com/@mattiasvillani/multivariate-normal-distribution


Maximum likelihood estimation

Log-likelihood ℓ(𝜃) for discrete variables

If 𝑌1, 𝑌2, … , 𝑌𝑛 are iid with probability function
𝑝(𝑦𝑖 ∣ 𝜃 )

ℓ(𝜃) =
𝑛

∑
𝑖=1

log 𝑝(𝑦𝑖 ∣ 𝜃 )

Log-likelihood ℓ(𝜃) for continuous variables

If 𝑌1, 𝑌2, … , 𝑌𝑛 are iid with density function 𝑓 (𝑦𝑖 ∣ 𝜃 )

ℓ(𝜃) =
𝑛

∑
𝑖=1

log 𝑓 (𝑦𝑖 ∣ 𝜃 )

Maximum likelihood estimator ̂𝜃

̂𝜃 = argmax
𝜃∈Θ

ℓ(𝜃)

Observed information

𝒥𝑛( ̂𝜃) = −ℓ″( ̂𝜃)

Fisher information

ℐ𝑛(𝜃) = 𝔼(𝑌1,…,𝑌𝑛)( − ℓ″(𝜃))

Approximate sampling distribution of the MLE
Informally, for large 𝑛

̂𝜃 approx∼ 𝑁(𝜃, ℐ−1(𝜃))

Linear Gaussian regression model

Regression model

For the 𝑖th observation

𝑦𝑖 = x⊤
𝑖 𝛽 + 𝜀𝑖, 𝜀𝑖

iid∼ 𝑁(0, 𝜎2
𝜀 )

where x𝑖 is a 𝑝-element vector with covariate/features.

For all 𝑛 observations

y = X𝛽 + 𝜀, 𝜀 ∼ 𝑁(0, 𝜎2
𝜀 ⋅ I𝑛)

Least squares/Maximum likelihood estimate

𝛽̂ = (X⊤X)−1X⊤y

Estimate of error variance 𝜎2
𝜀

𝑠2
𝑒 = e⊤e

𝑛 − 𝑝
where e is the 𝑛-element vector with residuals

e = y − X𝛽

Estimated sampling distribution

𝛽̂ ∼ 𝑁(𝛽, 𝑠2
𝑒 (X⊤X)−1)

Prediction for x = x𝑖

̂𝑦𝑖 = x⊤
𝑖 𝛽̂

Non-Gaussian regression models

Logistic regression

For the 𝑖th observation

𝑦𝑖 ∣ x𝑖
ind∼ Bernoulli(𝑝𝑖)

where
𝑝𝑖 = Pr(𝑦𝑖 = 1 ∣ x𝑖) = 1

1 + 𝑒−x⊤
𝑖 𝛽

and x𝑖 is a 𝑝-element vector with covariate/features.

Poisson regression

For the 𝑖th observation

𝑦𝑖 ∣ x𝑖
ind∼ Poisson( exp(x⊤

𝑖 𝛽)).

Cross validation

The observations of the data 𝒟 = {1, 2, … , 𝑛} are split
into 𝐾 parts, where each observation belongs to ex-
actly one part.

Test

Träning

Fold 1

Fold 2

Fold 3

Fold 4

Estimation of the predictive power on new data:

SSEcv = ∑
𝑖∈𝒯1

(𝑦𝑖 − ̂𝑦(1)
𝑖 )

2
+ … + ∑

𝑖∈𝒯𝐾

(𝑦𝑖 − ̂𝑦(𝐾)
𝑖 )

2
,

RMSEcv = √SSEcv
𝑛 ,

• 𝒯𝑘 ⊂ 𝒟 are all observations that are testdata in
fold 𝑘

• ∑𝑖∈𝒯𝑘
is the sum over all testdata in fold 𝑘

• ̂𝑦(𝑘)
𝑖 is the prediction of 𝑦𝑖 in fold 𝑘 from a model

estimated on all data except testdata in 𝒯𝑘.
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