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Arithmetics Derivatives Integrals
Powers Derivatives of elementary functions Anti-derivatives

For all real numbers x, y and positive numbers a, b
o a*q¥ = g*tV
o L =Y

e (ab)* = a*b*

., ) T
e a7 ='/a, where n is a positive integer

Natural logarithm

For positive numbers x, y
e c“=y x =In(y)
e In(xy) = In(x) + In(y)
. ln(’y—‘) = In(x) — In(y)

e In(x*) =pln(x)

Some special functions

Factorial of positive integers n

n=n-n-1)-(n—-2)---2-1
and 0! = 1.

Gamma function
Properties of the Gamma function

I'(n) = (n —1)!if n is a positive integer
I'(a+1) =al(a) forany a >0

k and a are constants.
e Lk=0

4

n _— n—1
] dxx =nx

° dieax — aeax
X

e Lln(x)=1,x>0
d a*

_x__
® &Y T ha

Derivatives of combined functions

f(x) and g(x) are differentiable functions, and k a constant.

o Constant rule

d ’
S f0) =k-f @)

Sum rule

d !’ I
a(ﬂx) +8(x)) =f"(x) + 8 (%)

Product rule

d
a(ﬂx) -g(x)) =f1(x)g(x) +f(x)g' (x)

Quotient rule

& (10 L0500 /g
dx \ g(x) (g(x))z

Reciprocal rule

CYER I £
dx\gx) ) (g(x))z

e Chain rule for a composite function

d
3/ @) =f'(g(x) - g'(x)

C and k are constants.
o [x"dx= %ﬂx"“ +C, n# -1

o [edx=1e"+C,a#0

° f}—cdlenlxl,x>0

Definite integral of f (x) froma to b

b
[ dx = F1; = Fb) — F(a)

Integrals of combined functions

f(x) and g(x) are integrable functions.

e Constant rule
~[k-f(x)clx =k- jf(x)dx
e Sum rule

f(f(x) +g(x))dx = ff(x)dx-i—fg(x)dx

Combinatorics

Combinations and Permutations

How many ways can we choose k elements
from n elements?

with replacement ‘ without replacement

order nk 2P

k
o T
no order not included 7S = (}) = oo




Descriptive Statistics

Sample mean

Sample Variance

n =
2 _ Zi:l(xi - x)2
x

o = n—1

Sample standard deviation

_’2
Sx = \S%

Sample covariance

Yo (=D, — )

Sxy = Cov(x,y) = p—]

Sample correlation

Sxy

SxSy

Txy = Corr(x,y) =

Basic Probability

Addition Rule

P(AUB) =P(A)+P(B)-P(ANB)

Multiplication Rule

P(ANB) = P(BJA)P(A) = P(AB)P(B)

Law of Total Probability - basic version

P(A) = P(AIB)P(B) + P(A|B°)P(B°)

where B¢ is the complement of B.

Law of Total Probability - general partition

K
P(A) =) P(AIB)P(By)
k=1

where By, ..., By is a partitioning of the sample space.

Bayes’ Theorem - basic version

P(A[B)P(B)
P(A)
Bayes’ Theorem - general partition

P(BJA) =

P(AIB;)P(By)

P(BilA) = P(A)

Properties of One Random Variable

Expected value
If X is a discrete variable with probability function p(x)

u=EX) = Zx-p(x)

all x

If X is a continuous variable with density function f (x)

o

u=EX) = me -f(x)dx

Expected value of a function g(X)
If X is a discrete variable with probability function p(x)

E(g(X)) =) g(x)-p(x)

all x

If X is a continuous variable with density function f (x)

EQO0) = [ g fodx

Variance
If X is a discrete variable with probability function p(x)

o2=V(X) =) (x=?-px) = EX?) — 2

all x

If X is a continuous variable with density function f (x)

2 =V(X) = j_o;(x — w2 f)dx = E(X?) — p?
Standard deviation

r=8(X)=VX)
Expected value linear combination (c and d are constants)
E(c+d-X)=c+d-E(X)
Variance linear combination
Vc+d-X)=d2-V(X)

Distribution of a transformation

Let X be a continuous random variableand Y = g(X), where
g(x) is a monotone differentiable function with inverse func-
tion x = g~1(y). Then,

dg~(y)
A =fx(8tw) ‘ gdyy

Properties of Two Random Variables

Expected value of a linear combination
E(cX +4dY) = cE(X) +dE(Y)
Variance for a linear combination

V(X +dY) =c?V(X) +d>V(Y) + 2cdCov(X,Y)

Marginal distribution for X

If X and Y are discrete variables with joint probability func-
tion p(x,y), then the marginal distribution of X is

px(x) = Z p(x,y)

ally

If X and Y are continuous variables with joint density func-
tion f (x,y), then the marginal density of X is

fxt = [ fapdy

Conditional distribution for Y given X

If X and Y are discrete variables with joint probability func-
tion p(x,y), then the conditional distribution of Y is

px,y)
px(x)’
where px (x) is the marginal distribution for X.

plylx) = px(x) >0

If X and Y are continuous variables with joint density func-
tion f (x,y), then the conditional density of Y is
fy)
x) = , x) >0
fylx) (1) fx (%)

where fy (x) is the marginal density for X.

Law of iterated expectation
Ey(Y) = Ex(Eyx(YIX))

Covariance between two random variables X and Y
Cov(X,Y) = E((X-E(X))(Y=E(Y))) = E(XY)-E(X)E(Y)
Covariance between two discrete random variables X and Y

Cov(X,Y) = Z px,y)(x — EX))(y — E(Y))
all pairs (x,y)

where p(x,y) is the joint distribution of X and Y.

Correlation between two random variables X and Y
Cov(X,Y)

COI'I'(X, Y) = W




Properties of the Sample Mean

Let X;,X,,..., X, be independent identically distributed
random variables with expected value y = E(X;) and vari-

ance 02 = Var(X;). For the sample mean X,, = Z:;l X/n

we have:

Expected value of the sample mean
E(X,) =

Variance of the sample mean

— o2
Var(X,,) = o

Law of Large Numbers
- P
X, -
where 5 is convergence in probability: for all e > 0

P(lin—y|>e) — O0whenn — o

Central Limit Theorem (informally)

< approx o?
X, R N(F’W) for large n

Rule of Thumb: the approximation is accurate if n > 30.

Discrete Distributions

Bernoulli distribution X ~ Bernoulli(p)

q ifx=0
p(x) =
p ifx=1 whereq = 1—p.
E(X)=p
V(X) =pq

° °
° o
© p—

Geometric distribution X ~ Geom(p)

p(x) =g*pforx=0,1,2,...

E(X) = 1%”
V(X) = 1p;2”

Binomial Distribution: X ~ Binomial(#, p)
px) = (G)pg" ™ forx=0,1,2,...,n
E(X) =np
V(X) =npq

0 1 2 3 4 5 6 7 8 9 10
€T

Negative Binomial distribution: X ~ NegBin(r, p)

p) = (g forx =0,1,2, ...

r(1—p)

E(X) = TF’

r(l-p)

V(X) =5
p

0 1 2 3 4 5 6 7 8 9 10
T

Poisson Distribution: X ~ Pois(A)

e A\X

px) = —/— forx=0,1,2,...
EX)=A
VX)=A

0 1 2 3 4 5 6 7 8 9 10
x

Continuous Distributions

Normal Distribution: X ~ N(p, 02)

Z 1 (g2
fx) = \/zlﬁe 22T for — o < x < 0o
TTo
EX)=pu
V(X) =02
P(X <)

If X ~N(p,0?)and Y = ¢ + d - X then
Y~N(c+d~y,d2-02)
If X ~ N(p, 0?) then

X_
z=2"" N1
(%4


https://observablehq.com/@mattiasvillani/bernoulli-distribution
https://observablehq.com/@mattiasvillani/geometric-distribution
https://observablehq.com/@mattiasvillani/binomial-distribution
https://observablehq.com/@mattiasvillani/negative-binomial-distribution
https://observablehq.com/@mattiasvillani/poisson-distribution
https://observablehq.com/@mattiasvillani/normal-gaussian-distribution

Uniform distribution: X ~ U(a, b)

flx) = ,for —a<x<b
EX) = (a+b)/2
VX)) = b -a)?/12

/@)

Exponential distribution: X ~ Exp(B)

fx) = %e_%, forx>0

E(X)=p
V(X) = g

Gamma distribution X ~ Gamma(«, )

fx) = ﬁ“F(a) ¥ 1e=*/B forx >0
E(X) =ap
V(X) = ap?

x2-distribution X ~ Chi2(v)

f(X) mx”/z_le_x/z for x >0
E(X)=v
VX) =2v

Log-normal distribution X ~ LogNormal(y, 02)

1 —u?
fx) = ——e 27 o8O~ for 0 < x < o0

xV2mwo?

E(X) = exp( + 02/2)
VX) = (exp(JZ) - 1) exp(2u + ?)

Student t-distribution X ~ £(v)

fx) = —zy,zl_(l/mJc”/z_le_x/2 forx >0

E(X) =0ifv>1
V(X) = L ifv>2

Beta distribution X ~ Beta(a, 8)

fx) =
E(X) =

V(X) =

where

B(a,B) =

—1 41 _ \p-1
B(ﬂéﬁ)a (1—-x)f 7, for0<x<1

pc+/5
B
(@+B)? (a+B+1)

I'(a) T(B)
T'(a+pB)

Multivariate normal distribution

(Y1,Y5,...,Y,) T ~ N, I)

where y is the p-element mean vector and X is the

p X p covariance matrix.

In the bivariate case with p = 2:

(1)

y = ( ‘712 0120107 )
2

0120102 )

and pq, is the correlation between Y; and Y,.

8 0.20
7 017
. 015
012

>
0.10
4 0.07
3 0,05
0.02

2

0 T 2 3 4 5 3
x



https://observablehq.com/@mattiasvillani/uniform-distribution
https://observablehq.com/@mattiasvillani/exponential-distribution
https://observablehq.com/@mattiasvillani/gamma-distribution
https://observablehq.com/@mattiasvillani/chi2-distribution
https://observablehq.com/@mattiasvillani/log-normal-distribution
https://observablehq.com/@mattiasvillani/student-t-distribution-standard
https://observablehq.com/@mattiasvillani/beta-distribution
https://observablehq.com/@mattiasvillani/multivariate-normal-distribution

Maximum likelihood estimation

Log-likelihood £(6) for discrete variables
If Yq,Y,,..
pil6)

,Y, are iid with probability function

n
06) =) logp(y;6)
i=1
Log-likelihood {(6) for continuous variables

IfYq,Y5,...,Y, are iid with density function f (y;| )

(o) = ilogf(yi 10)
i=

Maximum likelihood estimator 8

0 = argg&a@x 0(0)
Observed information

Ju(0) = =" (9)
Fisher information

L0 (0) = Epy,,. v, (= U(0))

Approximate sampling distribution of the MLE

Informally, for large n

0 ETN(0,771(0))

Linear Gaussian regression model

Regression model

For the ith observation

»
Yi :XiT,B“‘gir g © N(0,02)

where x; is a p-element vector with covariate/features.

For all n observations

y=XB+e &e~N(,02-1,)

Least squares/Maximum likelihood estimate

’B — (XTX)fley
Estimate of error variance 2

T
2_ee
. =

n—p
where e is the n-element vector with residuals

e=y—Xp

Estimated sampling distribution

S

B~N(BszXTX))

Prediction for x = x;

Non-Gaussian regression models
Logistic regression
For the ith observation

yi | x; ind Bernoulli(p;)
where

pi=Pr(y;=11x;) = T

and x; is a p-element vector with covariate/features.

Poisson regression
For the ith observation

Yil X ind Poisson( exp(xiTﬁ)).

Cross validation

The observations of the data D = {1,2,...,n} are split
into K parts, where each observation belongs to ex-

actly one part.

alla observationer

D
Fold 1 Ti ‘ ’ ot
Fold 2 ‘ T2 ’
Fold 4 ‘ ‘ ‘ Ta

Estimation of the predictive power on new data:
2 2
~(1 ~(K
SSE., = Z (yi—y§ )) + ..+ Z (yi—y§ )) ,
ieh =

SSE
RMSE,, = | —<*,

e J. C D are all observations that are testdata in
fold k

> e, 1S the sum over all testdata in fold k

]7510 is the prediction of y; in fold k from a model

estimated on all data except testdata in Jj.

Created by Mattias Villani, Stockholm University.


https://www.su.se/profiles/villani-1.394193
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