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Overview

� Linear Gaussian regression as a probability model

� Logistic regression

� Poisson regression

� Generalized linear models and beyond



Linear Gaussian Regression

� The usual formulation for the ith observation

Yi = β0 + β1x1i + β2x2i + . . .+ βpxpi + εi , εi
iid∼ N(0, σ2

ε)

� The usual formulation in vector form

Yi = x>
i β + εi , εi

iid∼ N(0, σ2
ε)

� Equivalent formulation

Yi | x i
ind∼ N(µi , σ

2
ε)

µi = x>
i β

� Regression is a model for a conditional distribution f (y |x).

� The ith observation has its own mean µi given by the
regression line.



Regression models a conditional distribution Y |x



Logistic regression for binary response variable
� Assume now that the response Yi is binary (0 or 1).
� Without covariates: model distribution as Bernoulli

Yi
iid∼ Bernoulli(µ)

� With covariates: model conditional distribution as Bernoulli

Yi | x i
ind∼ Bernoulli(µi)

� Modeling the conditional mean as µi = x>
i β is no good.

� Use logistic function f (z) = 1
1+e−z to ensure that 0 ≤ µi ≤ 1

µi = Pr(Yi = 1 | x i) =
1

1 + e−x>
i β

� Logistic regression

Yi | x i
ind∼ Bernoulli(µi)

µi =
1

1 + e−x>
i β



Maximum likelihood for Bernoulli data

� Model: Y1, . . . ,Yn
iid∼ Bernoulli(p) [Note µ = E(Yi) = p]

� Bernoulli probability function

p(y) =
{
1− p if y = 0

p if y = 1

or
p(y) = py (1− p)1−y

� Likelihood
n∏

i=1

p(yi |p) =
n∏

i=1

pyi (1− p)1−yi = p
∑n

i=1 yi (1− p)n−
∑n

i=1 yi

= ps(1− p)f

� s =
∑n

i=1 yi is the number of successes
� f = n − s is the number of failures.



Maximum likelihood for Bernoulli data

� Likelihood

L(p) = ps(1− p)f

� Log-likelihood

`(p) = s log p + f log(1− p)

� First derivative (recall: f (x) = log(x) then f ′(x) = 1/x)

`′(p) = s
p − f

1− p

� Maximum likelihood estimate p̂ is the p that solves

`′(p) = s
p − f

1− p = 0

which has solution
p̂ =

s
n



Maximum likelihood for Bernoulli data - widget

https://observablehq.com/@mattiasvillani/maximum-likelihood-bernoulli-data


Maximum likelihood for Logistic regression

� Logistic regression

Yi | x i
ind∼ Bernoulli(µi)

µi =
1

1 + e−x>
i β

� Data: responses y (n × 1) and covariates X(n × p).
� Likelihood function (covariates assumed fixed, non-random

L(β) =
n∏

i=1

p(yi |x i)

=

n∏
i=1

µyi
i (1− µi)

1−yi

=

n∏
i=1

(
1

1 + e−x>
i β

)yi
(

e−x>
i β

1 + e−x>
i β

)1−yi

� Numerical maximization with optim.



Poisson regression for count data

� Assume now that the response Yi is a count (0, 1, 2, . . . ).

� Without covariates: distribution is Poisson

Yi
iid∼ Poisson(µ)

� With covariates: conditional distribution is Poisson

Yi | x i
ind∼ Poisson(µi)

� Modeling the conditional mean as µi = x>
i β is no good.

� Use exponential function to ensure that µi > 0

µi = ex>
i β

� Poisson regression

Yi | x i
ind∼ Poisson(µi)

µi = E(Yi |x i) = ex>
i β



ML for Poisson regression - widget

https://observablehq.com/@mattiasvillani/maximum-likelihood-poisson-regression


Generalized linear models (GLM)

� Continuous positive data. Gamma regression

Yi | x i
ind∼ Gamma(α, ex>

i β)

µi = E(Yi |x i) = αex>
i β

� Data as proportions: Beta regression.

� Truncated data: truncated normal regression: widget

� ... and so on ...

� Generalized Linear Models.

� Maximum likelihood by numerical maximization.

� Sampling distribution from Observed information

β̂
approx∼ N

(
β,J −1

n (β̂)
)

for large n

https://observablehq.com/@mattiasvillani/truncated-normal-distribution


GLMs are linear models
� Logistic regression

Yi | x i
ind∼ Bernoulli(µi)

µi =
1

1 + e−x>
i β

� Decision boundary: Pr(yi = 1|x i) = Pr(yi = 0|x i)

µi = 1− µi ⇐⇒ 1

1 + e−x>
i β

=
e−x>

i β

1 + e−x>
i β

1 = e−x>
i β ⇐⇒ 0 = x>

i β

(take log on both sides, and recall log 1 = 0 and log ea = a).

� Decision boundaries are linear in the features, x.
� Linear GLMs are:

I highly interpretable.
I robust to overfitting.
I restrictive.



Logistic regression - linear decision boundaries



Non-linear regression

� Example: Poisson non-linear regression

Yi | x i
ind∼ Poisson(µi)

µi = ef (x i )

where f (x i) is some (non-linear) function of the covariates.
� Examples:

I Linear: f (x) = β0 + β1x
I Polynomial: f (x) = β0 + β1x + β2x2 + β3x3 + . . .

� Other non-linear models:
I Splines
I Regression trees
I Neural networks
I Gaussian processes


