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Overview

B Linear Gaussian regression as a probability model
B Logistic regression
B Poisson regression

B Generalized linear models and beyond



Linear Gaussian Regression

B The usual formulation for the ith observation
iid
Yi = Bo + Bixii + Baxgi + ... 4 Bpxpi +€iy € ~ N(O, 03)
B The usual formulation in vector form
Yi=x/B+e, & S N(0,02)

B Equivalent formulation

Y| xi % N, 02)

i =x;
I Regression is a model for a conditional distribution f(y|x).

B The ith observation has its own mean 1i; given by the
regression line.



Regression models a conditional distribution Y|x

—— EY|z) = B, + B
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Logistic regression for binary response variable

B Assume now that the response Y; is binary (0 or 1).
B Without covariates: model distribution as Bernoulli
Y; g Bernoulli(u)
B With covariates: model conditional distribution as Bernoulli
Yi | xi nd Bernoulli(y;)
B Modeling the conditional mean as u; = XTB is no good.
B Use logistic function f(z) = to ensure that 0 < p; < 1

1
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B Logistic regression

Yi | x; nd Bernoulli(u;)
1

M e



Maximum likelihood for Bernoulli data

W Model: Yi,...,Y, " Bernoulli(p)  [Note = E(Y;) = p]
[l Bernoulli probability function

() = 1—p ify=0
PYI=1p ify=1

or

B Likelihood

n

n
[TpWilp) =[P (1 = p)' i = p2i=1¥i(1 — p)™ iz
i=1 i=1

=p°(1—p)

W s=>"",yiis the number of successes

B f = n— s is the number of failures.



Maximum likelihood for Bernoulli data
B Likelihood
L(p) = p*(1 — p)"
B Log-likelihood
{(p) = slogp + flog(1 — p)
W First derivative (recall: f(x) = log(x) then f'(x) = 1/x)

S f
U(p)==——
(p) R

B Maximum likelihood estimate p is the p that solves

which has solution



Maximum likelihood for Bernoulli data - widget



https://observablehq.com/@mattiasvillani/maximum-likelihood-bernoulli-data

Maximum likelihood for Logistic regression &

B Logistic regression

Yi | xi nd Bernoulli( ;)
1
14exP
I Data: responses y (n x 1) and covariates X(n x p).
W Likelihood function (covariates assumed fixed, non-random

L(B) = _Hp(y,-|x,-)
_HMI: _ 1 —Yi

Yi e—x,.—rﬂ 1=
N H (1 e ﬁ) 1+e B

B Numerical maximization with optim.

pi =




Poisson regression for count data

I Assume now that the response Y; is a count (0,1,2,... ).
B Without covariates: distribution is Poisson
y; i Poisson ()
B With covariates: conditional distribution is Poisson
Yi | x; i Poisson ()
Il Modeling the conditional mean as u; = x,-TB is no good.
[l Use exponential function to ensure that y; > 0

Ni = eXIT,B

B Poisson regression

Yi | xi ind Poisson(u;)
-
i = E(Yilxi) = 79



ML for Poisson regression - widget



https://observablehq.com/@mattiasvillani/maximum-likelihood-poisson-regression

Generalized linear models (GLM)

l Continuous positive data. Gamma regression

Yi | xi b Gamma(a, e"iTﬁ)

pi = E(Ylx;) = ae

Data as proportions: Beta regression.

Truncated data: truncated normal regression: widget
. and so on ...

Generalized Linear Models.

Maximum likelihood by numerical maximization.

Sampling distribution from Observed information

BPR N <,6', Jn_l(3)> for large n


https://observablehq.com/@mattiasvillani/truncated-normal-distribution

GLMs are linear models

B Logistic regression

Yi | x; nd Bernoulli(u;)
1

T

Bi= 1tex B e B

M Decision boundary: Pr(y; = 1|x;) = Pr(y; = 0|x;)
1 e B

:ul':l_lul' 1+e—xrﬂ:1+e—x;rﬂ

.
l=e P — 0=x/p
(take log on both sides, and recall log1 = 0 and log e? = a).

B Decision boundaries are linear in the features, x.

B Linear GLMs are:
» highly interpretable.
» robust to overfitting.
> restrictive.



Logistic regression - linear decision boundaries
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Non-linear regression

B Example: Poisson non-linear regression

Yi | xi ‘nd Poisson(u;)

pi = ef ™)

where f(x;) is some (non-linear) function of the covariates.
B Examples:
» Linear: f(x) = 8o + Bix
» Polynomial: f(x) = By + B1x + Box? 4 B3x3 + .

B Other non-linear models:
» Splines
» Regression trees
» Neural networks
>

Gaussian processes



