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Overview

� Non-linear regression

� Regularization

� Exponential growth regression



Polynomial regression

� Polynomial regression of degree/order p

y = β0 + β1x + β2x2 + . . .+ βpxp + ε, ε
iid∼ N(0, σ2

ε)

� Nonlinear in x

� Linear in β0, β1, . . . , βp

� Polynomial regression is just a linear regression with features:
I x1 = x
I x2 = x2

I
...

I xp = xp

� Can use least squares estimate for the model

yi = x>
i β + εi , εi

iid∼ N(0, σ2
ε)

where the covariate/feature vector has p + 1 elements

x i = (1, xi , x2
i , . . . , x

p
i )

>



Polynomial regression data setup



Polynomial regression for mtcars data



K-fold cross-validation

� Fold k:

I Index for test observations in fold k: Tk .

I Model is fitted to training data in fold k

I Predictions ŷ (k)
i for test data i ∈ Tk .



K-fold cross-validation

� K-fold cross-validated prediction error

SSECV =
∑
i∈T1

(
yi − ŷ (1)

i

)2
+ . . .+

∑
i∈TK

(
yi − ŷ (K)

i

)2

RMSECV =

√
SSECV

n
� Can be used for model choice, for example polynomial order.



mtcars data - R2 and RMSE-CV (K = 4)



Interpretation in nonlinear model is more tricky

� Derivative: how much does y change when x changes?

� Linear model - derivative does not depend on x

d
dx (β0 + β1x) = β1

� Quadratic model - derivative depends on x

d
dx (β0 + β1x + β2x2) = β1 + 2β2x



L2-regularization (Ridge regression)

� Least squares minimizes residual sum of squares

RSS(β0, β1) =
n∑

i=1

(yi − β0 − β1xi)
2

� Same estimator as from maximum likelihood

`(β0, β1) = −n
2

log(2πσ2)− 1

2σ2
ε

n∑
i=1

(yi − β0 − β1xi)
2

� Flexible models with many parameters can overfit.
� Regularization penalizes large values of the parameters.
� L2-regularization

RSSP(β0, β1) =

n∑
i=1

(yi − β0 − β1xi)
2 + λ · (β2

0 + β2
1)︸ ︷︷ ︸

L2−penalty



L2-regularization (Ridge regression)
� Multiple regression: least squares β̂ = (X>X)−1X>y

minimizes

RSS(β) =
n∑

i=1

(yi − x>
i β)

2 = (y − Xβ)>(y − Xβ)

� L2-regularization
RSSP(β) = (y − Xβ)>(y − Xβ) + λ · β>β︸ ︷︷ ︸

L2−penalty

� Solving for β (Linear Algebra section in the Prequel book)
∂

∂β
RSSP(β) = −2X>(y − Xβ) + 2λβ = 0

solution: β̂L2
= (X>X + λIp)

−1X>y
� Shrinkage of least squares β̂ toward zero. When X>X = Ip ,

β̂L2
=

1

1 + λ
β̂



L1-regularization (Lasso regression)

� L1-regularization (Lasso)

RSSP(β) = (y − Xβ)>(y − Xβ) + λ ·
p∑

j=1

| βj |︸ ︷︷ ︸
L1−penalty

� No explicit formula, but very efficient algorithm (LARS).

� Lasso does both:

I shrinkage and

I selection - sets some β̂j exactly to zero.

� L1 and L2 regularization can be seen a Bayesian priors.



Regularization mtcars data

� Shrinkage parameter λ selected by cross-validation.

� Lasso:
y = 35.81− 43.54 · hp + 23.32 · hp3



Exponential (growth) regression

� Model:

Y = β0 · βx
1 · ε, ε ∼ LogNormal(0, σ2

ε)

� Take logs to make the model linear!

log Y︸ ︷︷ ︸
ỹ

= logβ0︸ ︷︷ ︸
γ0

+ logβ1︸ ︷︷ ︸
γ1

· x + log ε︸︷︷︸
ε̃

Ỹ = γ0 + γ1 · x + ε̃, ε̃ ∼ N
(
0, σ2

ε̃

)
.

� Exponential regression can be fit by least squares on log y !

� Prediction at x = x?:
I Predict ỹ on the log scale
I Transform to original scale: e ỹ



Chinese growth



Chinese growth 2000-2013

� y = growth GDP (gross domestic product)
� x = year−1999 (so x = 1 is the year 2000)

� γ̂0 = 2.8498, so β̂0 = 10γ̂0 = 102.8498 ≈ 707.62.

� γ̂1 = 0.0729, so β̂1 = 10γ̂1 = 100.0729005 = 1.18277.
� Fitted model on original scale

ŷ = β̂0 · β̂x
1 = 707.62 · 1.18277x

� 18% yearly growth!



Chinese growth 2000-2013



Chinese growth 2000-2021


