Statistical Theory and Modeling (ST2601) Lecture 11 - Nonlinear regression and Regularization

Mattias Villani

Department of Statistics Stockholm University

Non-linear regression

Regularization

Exponential growth regression

Polynomial regression

Polynomial regression of degree/order *p*

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \ldots + \beta_p x^p + \varepsilon, \quad \varepsilon \stackrel{\text{iid}}{\sim} N(0, \sigma_{\varepsilon}^2)$$

Nonlinear in *x*

Linear in $\beta_0, \beta_1, \ldots, \beta_p$

Polynomial regression is just a linear regression with features:

>
$$x_1 = x$$

> $x_2 = x^2$
> \vdots
> $x_p = x^p$

Can use least squares estimate for the model

$$y_i = \mathbf{x}_i^\top \boldsymbol{\beta} + \varepsilon_i, \quad \varepsilon_i \stackrel{\text{iid}}{\sim} N(0, \sigma_{\varepsilon}^2)$$

where the covariate/feature vector has p + 1 elements

$$\mathbf{x}_i = (1, x_i, x_i^2, \dots, x_i^p)^\top$$

Polynomial regression data setup

	A	В	С	D	E	F
1		mpg (y)	hp (x)	X ²	X ³	X ⁴
2	Mazda RX4	21.000	0.328	0.108	0.035	0.012
3	Mazda RX4 Wag	21.000	0.328	0.108	0.035	0.012
4	Datsun 710	22.800	0.278	0.077	0.021	0.006
5	Hornet 4 Drive	21.400	0.328	0.108	0.035	0.012
6	Hornet Sportabo	18.700	0.522	0.273	0.143	0.074
7	Valiant	18.100	0.313	0.098	0.031	0.010
8	Duster 360	14.300	0.731	0.535	0.391	0.286
9	Merc 240D	24.400	0.185	0.034	0.006	0.001
10	Merc 230	22.800	0.284	0.080	0.023	0.006
11	Merc 280	19.200	0.367	0.135	0.049	0.018
12	Merc 280C	17.800	0.367	0.135	0.049	0.018
13	Merc 450SE	16.400	0.537	0.289	0.155	0.083
14	Merc 450SL	17.300	0.537	0.289	0.155	0.083
15	Merc 450SLC	15.200	0.537	0.289	0.155	0.083
16	Cadillac Fleetwo	10.400	0.612	0.374	0.229	0.140
17	Lincoln Continer	10.400	0.642	0.412	0.264	0.170
18	Chrysler Imperia	14.700	0.687	0.471	0.324	0.222
19	Fiat 128	32.400	0.197	0.039	0.008	0.002
20	Honda Civic	30.400	0.155	0.024	0.004	0.001
21	Toyota Corolla	33.900	0.194	0.038	0.007	0.001
22	Toyota Corona	21.500	0.290	0.084	0.024	0.007
23	Dodge Challeng	15.500	0.448	0.200	0.090	0.040
24	AMC Javelin	15.200	0.448	0.200	0.090	0.040
25	Camaro Z28	13.300	0.731	0.535	0.391	0.286
26	Pontiac Firebird	19.200	0.522	0.273	0.143	0.074
27	Fiat X1-9	27.300	0.197	0.039	0.008	0.002
28	Porsche 914-2	26.000	0.272	0.074	0.020	0.005
29	Lotus Europa	30.400	0.337	0.114	0.038	0.013
30	Ford Pantera L	15.800	0.788	0.621	0.489	0.386
31	Ferrari Dino	19.700	0.522	0.273	0.143	0.074

Polynomial regression for mtcars data

K-fold cross-validation

Fold 1

siltyp	mpg	hp
Hornet Sportabout	18.7	0.5
Fiat X1-9	27.3	0.2
Verc 450SL	17.3	0.5
Merc 450SLC	15.2	0.5
Verc 240D	24.4	0.1
Duster 350	14.3	0.7
Datsun 710	22.8	0.2
Ferrari Dino	19.7	0.5
Ford Pantera L	15.8	0.7
Pontiac Firebird	19.2	0.5
Toyota Corona	21.5	0.2
AMC Javelin	15.2	0.4
Camaro 228	13.3	0.7
Fiat 128	32.4	0.3
Merc 290C	17.8	0.3
otus Europa	30.4	0.5
Cadillac Fleetwood	10.4	0.1
Chrysler Imperial	14.7	0.6
Vazda RX4	21	0.3
/ohvo 142E	21.4	0.3
Wazda RX4 Wag	21	0.3
Verc 230	22.8	0.3
Toyota Corolla	33.9	0.0
Merc 280	19.2	0.5
Dodge Challenger	15.5	0.4
Jincoln Continental	10.4	0.6
Aslant	18.1	0.3
Honda Civic	30.4	0.1
Hornet 4 Drive	21.4	0.5
Verc 450SE	16.4	0.5
Maserati Bora	15	1.0
Porsche 914-2	26	0.3

_		

iltyp	mpg	hp
Iornet Sportabout	18.7	0.52
iat X1-9	27.3	0.20
terc 450SL	17.3	0.54
lerc 450SLC	15.2	0.54
ferc 240D	24.4	0.19
uster 360	14.3	0.73
atsun 710	22.8	0.28
errari Dino	19.7	0.52
ord Pantera L	15.8	0.79
ontiac Firebird	19.2	0.52
oyota Corona	21.5	0.29
MC Javelin	15.2	0.45
amaro Z28	13.3	0.73
iat 128	32.4	0.20
ferc 280C	17.8	0.37
otus Europa	30.4	0.34
adillac Fleetwood	10.4	0.61
hrysler Imperial	14.7	0.69
lazda RX4	21	0.33
olvo 142E	21.4	0.33
lazda RX4 Wag	21	0.33
terc 230	22.8	0.28
oyota Corolla	33.9	0.19
ferc 280	19.2	0.37
odge Challenger	15.5	0.45
incoln Continental	10.4	0.64
allant	18.1	0.31
londa Civic	30.4	0.16
lornet 4 Drive	21.4	0.33
ferc 450SE	16.4	0.54
laserati Bora	15	1.00
proche 914-2	26	0.27

Fold 3

18.7

22.8 0.28 19.7 0.52

15.8

19.2 0.52

32.4

14.7 0.69 21 0.33

33.9

19.2

15.5 0.45

10.4 0.64 18.1 0.31

15 1.00

biltyp

Fiat X1-9 Merc 4505L

Arr: 45051.0

uster 36

Ford Pantera L

Pontiac Firebin

AMC Javeir

Camaro Z28

Merc 280C

Merc 230 Toyota Corolle

Merc 280

Dodge Challenge

Lincoln Continents

formet 4 Drive

Aaserati Bora

Cadillac Fleetuco

Chrysler Imperia

hp 0.52

0.54

0.54

0.45

0.37

0.61

0.33

Fold 4

biltyp	mpg	hp
Homet Sportabout	18.7	0.
Fiat X1-9	27.3	0.
Merc 450SL	17.3	0.
Merc 450SLC	15.2	0.
Merc 240D	24.4	0.
Duster 360	14.3	0.
Datsun 710	22.8	0.
Ferrari Dino	19.7	0.
Ford Pantera L	15.8	0.
Pontiac Firebird	19.2	0.
Toyota Corona	21.5	0.
AMC Javelin	15.2	0.
Carnaro Z28	13.3	0.
Fiat 128	32.4	0.
Merc 280C	17.8	0.
Lotus Europa	30.4	0.
Cadillac Fleetwood	10.4	0.
Chrysler Imperial	14.7	0.
Mazda RX4	21	0.
Volvo 142E	21.4	0.
Mazda RX4 Wag	21	0.
Merc 230	22.8	0.
Toyota Corolla	33.9	0.
Merc 280	19.2	0.
Dodge Challenger	15.5	0.
Lincoln Continental	10.4	0.
Valent	18.1	0.
Honda Civic	30.4	0.
Homet 4 Drive	21.4	0.
Merc 450SE	16.4	0.
Maserati Bora	15	1
Porsche 914-2	26	0.

Fold k:

- lndex for test observations in fold k: T_k .
- Model is fitted to training data in fold k
- Predictions $\hat{y}_i^{(k)}$ for test data $i \in \mathcal{T}_k$.

K-fold cross-validation

Fold 1		Fold 2			Fold 3			Fold 4			
bityp	nea	ha	billyp	nee	te .	645p	mag	he	bityp	nea	ha
Homet Sportsbout	10.7	9.52	Homet Spotabout	35.7	8.52	Harnet Sportsbout	18.7	0.52	Homet Sportsbout	16.7	
Fiet 31-9	27.3	0.29	Fire X3-8	27.5	8.20	For XL-9	22.3	0.20	First 31-9	27.3	0.2
Mert 4505L	17.3	0.54	Merc 45053,	17.5	8.54	Merc 45850.	12.3	0.54	Merc 4505L	17.3	0.5
Mart 4505LC	15.2	0.54	Mere 4505LC	15.2	8.54	Merc 45858,C	15.2	0.54	Marc 4505LC	15.2	0.5
Mart 2400	24.4	0.13	Mere 2400	24.4	0.10	Merc 2400	24.4	0.29	Mert 2400	24.4	0.1
Duster 380	34.3	0.73	Dunker 363	34.3	0.73	Duster 360	14.3	0.73	Duster 380	14.3	0.1
Debus T30	22.8	0.28	Colum 733	22.8	0.28	Delsen 710	22.8	0.28	Debus T30	22.8	0.7
Period Direc	10.7	0.82	Penal Diso	23.7	0.52	Permitting	18.7	0.82	Fernal Dire	10.7	0.5
Fard Posters L	15.8	0.78	Ford Panters L	15.8	8.79	Ford Pandesa L	15.8	0.79	Ford Posters L	15.8	0.1
Paralac Fieldera	19.2	0.62	Postac Finded	19.2	0.52	Fondec Firebed	18.2	0.82	Pardini Firefard	19.2	0.5
Toysta Corona	21.5	0.29	Sopola Carana	21.5	6.29	Taysta Cososa	21.5	0.29	Yoyata Corona	21.5	0.2
AMC Javelo	16.2	0.45	ABIC Javela	15.2	2.05	AMC Juvelo	15.2	0.45	AMC Javelin	16.2	0.6
Camaro 228	12.3	0.72	Camera 228	13.2	0.72	Camaro 228	13.2	0.72	Camaro 228	12.3	0.7
Fax 128	22.4	0.22	First 128	22.4	6.20	First 128	22.4	0.20	Fig. 128	22.4	0.2
Aws 280C	17.8	0.27	Marc 280C	17.8	8.27	Merc 299C	17.8	0.37	Marc 280C	17.8	0.2
LOBUS Europe	20.4	0.94	Lature Europe	22.4	8.24	Loss Europe	20.4	0.34	LOBUS Europe	20.4	0.9
adilac Fertwood	30.4	0.65	Cadillac Fleetwood	22.4	8.61	Cadillac Floetwood	18.4	0.61	Cadilac Fiersecod	30.4	0.6
Chrysler Imporial	14.7	0.69	Chrysler Imperial	347	8.99	Chrysler Imperial	14.7	0.89	Chrysler Imperial	14.7	0.0
Austa RX4	21	0.00	Martin F044	21	6.00	Mappia R 64	21	0.33	Mazda RX4	21	0.5
Veho 1425	21.4	0.33	Volva 142E	21.4	6.32	Voteo 1420	21.4	0.33	Velvo 1425	21.4	0.5
Fands RX4 Weg	21	0.33	Mazde F044 Wep	21	6.32	Mactia R 64 Wag	21	0.33	Manda RX4 Weg	21	0.5
Mert 230	22.8	0.28	Merc 230	22.6	8.28	Merc 230	22.8	0.25	Mert 200	22.8	0.2
Ineria Corola	33.0	0.11	Transfer Carrelia	33.9	010	Dente Creste	33.9	0.79	Transa Consta	33.0	0.1
Mary 250	19.7	0.72	Merr 280	72.7	0.37	Max: 200	18.2	0.77	Marr 250	19.7	0.3
Dodge Chelleman	35.6	0.45	Drates Chalanser	15.5	2.45	Darine Challenner	15.5	0.45	Dodge Chelenger	55.6	0.4
invests Continuedal	10.4	0.64	I much Continental	22.4	2.54	Lincoln Continental	10.4	0.64	Linesis Continental	10.4	9.6
Adapt	16.1	0.20	delared	15.1	0.33	abder/d	18.1	0.31	Valued	18.1	0.3
ting Cvs	30.4	0.14	Number Chiefe	31.4	0.14	Handa (Date)	20.4	0.35	Honda Cive	30.4	0.1
Homed & Drive	71.4	0.33	Internet & Drive	21.4	0.33	Harnel & Drive	71.4	0.33	Homet & Drive	71.4	0.3
OWN GLOBA	26.4	0.54	Mex dictal	28.4	0.54	Med digiti	16.4	0.50	Marc dignal	26.4	0.5
Mananad Boss	15	1.00	Managerial Books	25	1.00	Maseral Earls	15	1.00	Maneral Rosa	15	1.0
Domina 915-2		0.12	Shannan Bird. B		8.97	Enclose St. A. C.	15	0.72	Doct 1 115.2		0.2

K-fold cross-validated prediction error

$$SSE_{CV} = \sum_{i \in \mathcal{T}_1} \left(y_i - \hat{y}_i^{(1)} \right)^2 + \ldots + \sum_{i \in \mathcal{T}_K} \left(y_i - \hat{y}_i^{(K)} \right)^2$$
$$RMSE_{CV} = \sqrt{\frac{SSE_{CV}}{n}}$$

Can be used for model choice, for example polynomial order.

mtcars data - R^2 and RMSE-CV (K = 4)

Interpretation in nonlinear model is more tricky

Derivative: how much does *y* change when *x* changes?

Linear model - derivative does not depend on x

$$\frac{\mathrm{d}}{\mathrm{d}x}(\beta_0 + \beta_1 x) = \beta_1$$

Quadratic model - derivative depends on x

$$\frac{\mathrm{d}}{\mathrm{d}x}(\beta_0 + \beta_1 x + \beta_2 x^2) = \beta_1 + 2\beta_2 x$$

L2-regularization (Ridge regression)

Least squares minimizes residual sum of squares

$$\operatorname{RSS}(\beta_0, \beta_1) = \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2$$

Same estimator as from maximum likelihood

$$\ell(\beta_0, \beta_1) = -\frac{n}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma_{\varepsilon}^2}\sum_{i=1}^{n}(y_i - \beta_0 - \beta_1 x_i)^2$$

Flexible models with many parameters can overfit.
Regularization penalizes large values of the parameters.
L2-regularization

$$\operatorname{RSS}_{P}(\beta_{0},\beta_{1}) = \sum_{i=1}^{n} (y_{i} - \beta_{0} - \beta_{1}x_{i})^{2} + \underbrace{\lambda \cdot (\beta_{0}^{2} + \beta_{1}^{2})}_{\text{L2-penalty}}$$

L2-regularization (Ridge regression)

Multiple regression: least squares $\hat{\beta} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$ minimizes

$$RSS(\boldsymbol{\beta}) = \sum_{i=1}^{n} (y_i - \boldsymbol{x}_i^{\top} \boldsymbol{\beta})^2 = (\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta})^{\top} (\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta})$$

L2-regularization

$$\operatorname{RSS}_{P}(\boldsymbol{\beta}) = (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^{\top} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}) + \underbrace{\lambda \cdot \boldsymbol{\beta}^{\top} \boldsymbol{\beta}}_{L2-\text{penalty}}$$

$$\hat{\boldsymbol{\beta}}_{L_2} = rac{1}{1+\lambda}\hat{\boldsymbol{\beta}}$$

L1-regularization (Lasso regression)

L1-regularization (Lasso)

$$\operatorname{RSS}_{P}(\boldsymbol{\beta}) = (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^{\top} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}) + \underbrace{\lambda \cdot \sum_{j=1}^{p} |\beta_{j}|}_{\text{L1-penalty}}$$

No explicit formula, but very efficient algorithm (LARS).

shrinkage and

selection - sets some $\hat{\beta}_j$ exactly to zero.

L1 and L2 regularization can be seen a Bayesian priors.

Regularization mtcars data

Shrinkage parameter λ selected by cross-validation.

Lasso:

$$y = 35.81 - 43.54 \cdot hp + 23.32 \cdot hp^3$$

Exponential (growth) regression

Model:

$$\mathbf{Y} = \beta_0 \cdot \beta_1^{\mathbf{x}} \cdot \varepsilon, \quad \varepsilon \sim \text{LogNormal}(0, \sigma_{\varepsilon}^2)$$

Take logs to make the model linear!

$$\underbrace{\log Y}_{\tilde{y}} = \underbrace{\log \beta_0}_{\gamma_0} + \underbrace{\log \beta_1}_{\gamma_1} \cdot x + \underbrace{\log \varepsilon}_{\tilde{\varepsilon}}$$
$$\tilde{Y} = \gamma_0 + \gamma_1 \cdot x + \tilde{\varepsilon}, \qquad \tilde{\varepsilon} \sim \mathcal{N}\left(0, \sigma_{\tilde{\varepsilon}}^2\right).$$

Exponential regression can be fit by least squares on log y!

Prediction at $x = x^*$:

- > Predict \tilde{y} on the log scale
- > Transform to original scale: $e^{\tilde{y}}$

Chinese growth

	A	в	с	D	E
1	year	gdp	gdpgrowth	log10(gdp)	t = year - 1999
2	2000	959.3725	9.86	2.981987265	1
3	2001	1053.1082	9.77	3.022472994	2
4	2002	1148.5083	9.06	3.060134138	3
5	2003	1288.6433	12.2	3.11013272	4
6	2004	1508.6681	17.07	3.178593708	5
7	2005	1753.4178	16.22	3.243885411	6
8	2006	2099.2294	19.72	3.3220599	7
9	2007	2693.9701	28.33	3.430392771	8
10	2008	3468.3046	28.74	3.540117232	9
11	2009	3832.2364	10.49	3.583452292	10
12	2010	4550.4531	18.74	3.658054643	11
13	2011	5618.1323	23.46	3.749591962	12
14	2012	6316.9183	12.44	3.80050526	13
15	2013	7050.6463	11.62	3.848228929	14
16	2014	7678.5995	8.91	3.885282016	15
17	2015	8066.9426	5.06	3.906708967	16
18	2016	8147.9377	1	3.9110477	17
19	2017	8879.4387	8.98	3.948385513	18
20	2018	9976.6771	12.36	3.998985916	19
21	2019	10216.6303	2.41	4.009307678	20
22	2020	10500.3956	2.78	4.021205661	21
23					

Chinese growth 2000-2013

u y =growth GDP (gross domestic product)

x = year - 1999 (so x = 1 is the year 2000)

Coefficients:									
	Coef.	Std. Error	t	Pr(> t)	Lower 95%	Upper 95%			
(Intercept) year	2.8498 0.0729005	0.0192341 0.00242327	148.16 30.08	<le-18 <le-11< td=""><td>2.80747 0.067567</td><td>2.89214 0.0782341</td></le-11<></le-18 	2.80747 0.067567	2.89214 0.0782341			

$$\hat{\gamma}_0 = 2.8498$$
, so $\hat{\beta}_0 = 10^{\hat{\gamma}_0} = 10^{2.8498} \approx 707.62$.

$$\hat{\gamma}_1 = 0.0729$$
, so $\hat{\beta}_1 = 10^{\hat{\gamma}_1} = 10^{0.0729005} = 1.18277$.

Fitted model on original scale

$$\hat{y} = \hat{\beta}_0 \cdot \hat{\beta}_1^{\mathsf{x}} = 707.62 \cdot 1.18277^{\mathsf{x}}$$

18% yearly growth!

Chinese growth 2000-2013

Chinese growth 2000-2021

