Statistical Theory and Modeling (ST2601) Lecture 12 - Autocorrelation and autoregressive models for time series

Mattias Villani

Department of Statistics Stockholm University

Overview

Time series

- Autocorrelation function
- Autoregressive models

Time series data are special

Time series: data measured over time y_t , t = 1, 2, ...

- Cross-sectional data measured over time. Time series regression.
- Time series are special:
 - **Trend**, seasonality.
 - Dependent observations over time. Yesterday's value y_{t-1} can predict today's value y_t. Autocorrelation.
 - Sometimes the observations are **not equi-distant in time**.

Monte Carlo methods like MCMC and HMC (see Bayes course!) give dependent simulated draws. Time series methods useful for measuring efficiency and diagnosing convergence problems.

Example time series

Particle matter (PM2.5) at the street Hornsgatan

Repetition - sample correlation

Covariance between two variables

$$s_{xy} = \operatorname{cov}(x, y) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n - 1}$$

Correlation between two variables:

$$r_{xy} = \operatorname{corr}(x, y) = \frac{s_{xy}}{s_x s_y}$$

where

$$s_x^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n-1}$$

Repetition - sample correlation

Autocorrelation of order 1

Observations in a time series y_t are often dependent/correlated.

Autocorrelation of order 1:

 $r_1 = \operatorname{corr}(y_t, y_{t-1})$

"Correlation between today's and yesterday's value."

"Correlation between this month and the previous month."

First lag":
$$y_{t-1}$$
.

Inflation

Lagged variables - inflation

	A	В	С	D	E	F
1	Månad	Inflation(t)	Inflation(t-1)	Inflation(t-2)	Inflation(t-3)	Inflation(t-4)
2	1995-05-01	2.96				
3	1995-06-01	2.88	2.96			
4	1995-07-01	2.79	2.88	2.96		
5	1995-08-01	2.68	2.79	2.88	2.96	
6	1995-09-01	2.39	2.68	2.79	2.88	2.96
7	1995-10-01	2.58	2.39	2.68	2.79	2.88
8	1995-11-01	2.65	2.58	2.39	2.68	2.79
9	1995-12-01	2.6	2.65	2.58	2.39	2.68
10	1996-01-01	1.75	2.6	2.65	2.58	2.39
11	1996-02-01	1.47	1.75	2.6	2.65	2.58
12	1996-03-01	1.56	1.47	1.75	2.6	2.65
13	1996-04-01	1.31	1.56	1.47	1.75	2.6
14	1996-05-01	1.06	1.31	1.56	1.47	1.75
15	1996-06-01	1.04	1.06	1.31	1.56	1.47
16	1996-07-01	0.88	1.04	1.06	1.31	1.56
17	1996-08-01	0.66	0.88	1.04	1.06	1.31
18	1996-09-01	0.25	0.66	0.88	1.04	1.06
19	1996-10-01	0.03	0.25	0.66	0.88	1.04
20	1996-11-01	-0.05	0.03	0.25	0.66	0.88
21	1996-12-01	0.12	-0.05	0.03	0.25	0.66
22	1997-01-01	0.69	0.12	-0.05	0.03	0.25

Inflation - autocorrelation lag 1

Autocorrelation of order 2

Autocorrelation of order 2:

$$r_2 = \operatorname{corr}(y_t, y_{t-2})$$

"Correlation between today's value and the value two days back."

"Correlation between this month's value and the value two months back."

• "Second lag": y_{t-2} .

Autocorrelation lag 2

Autocorrelation function

Autocorrelation of order k

$$r_k = \operatorname{corr}(y_t, y_{t-k})$$

"Correlation between this month's value and k months back in time.".

Autocorrelation function (ACF) is r_k as a function of the time delay, k.

Inflation - autokorrelationsfunktion

Autoregressive models

Autoregressive model of order 1 (AR(1))

$$y_t = \beta_0 + \beta_1 y_{t-1} + \varepsilon_t, \qquad \varepsilon_t \sim \mathcal{N}(0, \sigma_{\varepsilon}^2)$$

AR(1) is a regression with y_{t-1} as explanatory variable!
 Fit with the least squares method

$$y_t = \beta_0 + \beta_1 y_{t-1} + \varepsilon_t$$

• Autoregressiv modell av ordning p (AR(p))

$$y_t = \beta_0 + \beta_1 y_{t-1} + \ldots + \beta_p y_{t-p} + \varepsilon_t, \qquad \varepsilon_t \sim N(0, \sigma_{\varepsilon}^2)$$

AR(p) is a **multiple regression** with the p explanatory variables $y_{t-1}, ..., y_{t-p}$.

- > library(SUdatasets)
- > arimafit = arima(swedinfl\$KPIF, order = c(1,0,0))
- > arima_coef_summary(arimafit)

Parameter estimates							
	Estimate	Std. Error	z-ratio	Pr(> z)	2.5 %	97.5 %	
ar1	0.91801	0.022383	41.0135	0	0.87414	0.96188	
mean	1.43624	0.165006	8.7042	0	1.11282	1.75965	
>							
>							

AR(4) for inflation - R

- > library(SUdatasets)
- > arimafit = arima(swedinfl\$KPIF, order = c(4,0,0))
- > arima_coef_summary(arimafit)

Parameter estimates							
	Estimate	Std. Error	z-ratio	Pr(> z)	2.5 %	97.5 %	
ar1	0.8900015	0.055640	15.995742	0.00000	0.780947	0.999056	
ar2	0.0586250	0.075101	0.780619	0.43503	-0.088572	0.205822	
аг3	0.0062025	0.076370	0.081216	0.93527	-0.143483	0.155888	
ar4	-0.0405666	0.057249	-0.708605	0.47857	-0.152774	0.071641	
mean	1.4334525	0.158225	9.059583	0.00000	1.123331	1.743573	

Autocorrelation function AR(1)

AR(1)

$$y_t = \beta_0 + \beta_1 y_{t-1} + \varepsilon_t, \qquad \varepsilon_t \sim N(0, \sigma_{\varepsilon}^2)$$

Population autocorrelation function (ACF) for AR(1)

$$\rho_k = \beta^k, \text{ for } k = 1, 2, \dots$$

Simulate AR(p) and estimate ACF

Autoregressive models - stationarity

AR(1) is a stationary (non-explosive) model if -1 < β₁ < 1.
Some simulated AR(1) time series:

Prediction with an AR(1) model

Fitted AR(1)-model

$$y_t = \hat{\beta}_0 + \hat{\beta}_1 \cdot y_{t-1}$$

At time T, prediction for next month T + 1

$$\hat{y}_{\mathcal{T}+1} = \hat{\beta}_0 + \hat{\beta}_1 \cdot y_{\mathcal{T}}$$

Prediction for T+2

$$\hat{y}_{T+2} = \hat{\beta}_0 + \hat{\beta}_1 \cdot \hat{y}_{T+1}$$

Prediction with an AR(2) model

Fitted AR(2)-model

$$y_t = \hat{\beta}_0 + \hat{\beta}_1 \cdot y_{t-1} + \hat{\beta}_2 \cdot y_{t-2}$$

At time T, prediction for next month T + 1

$$\hat{y}_{T+1} = \hat{\beta}_0 + \hat{\beta}_1 \cdot y_T + \hat{\beta}_2 \cdot y_{T-1}$$

Prediction for T + 2

$$\hat{y}_{\mathcal{T}+2} = \hat{\beta}_0 + \hat{\beta}_1 \cdot \hat{y}_{\mathcal{T}+1} + \hat{\beta}_2 \cdot y_{\mathcal{T}}$$

Prediction for T + 3

$$\hat{y}_{T+3} = \hat{\beta}_0 + \hat{\beta}_1 \cdot \hat{y}_{T+2} + \hat{\beta}_2 \cdot \hat{y}_{T+1}$$