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Overview

� Time series

� Autocorrelation function

� Autoregressive models



Time series data are special

� Time series: data measured over time yt , t = 1, 2, ...

� Cross-sectional data measured over time. Time series
regression.

� Time series are special:

I Trend, seasonality.

I Dependent observations over time. Yesterday’s value yt−1

can predict today’s value yt . Autocorrelation.

I Sometimes the observations are not equi-distant in time.

� Monte Carlo methods like MCMC and HMC (see Bayes
course!) give dependent simulated draws. Time series
methods useful for measuring efficiency and diagnosing
convergence problems.



Example time series
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Particle matter (PM2.5) at the street Hornsgatan



Repetition - sample correlation

� Covariance between two variables

sxy = cov(x , y) =
∑n

i=1(xi − x̄)(yi − ȳ)
n − 1

� Correlation between two variables:

rxy = corr(x , y) = sxy
sx sy

where
s2x =

∑n
i=1(xi − x̄)2

n − 1



Repetition - sample correlation



Autocorrelation of order 1

� Observations in a time series yt are often
dependent/correlated.

� Autocorrelation of order 1:

r1 = corr(yt , yt−1)

� “Correlation between today’s and yesterday’s value.”

� “Correlation between this month and the previous month.”

� “First lag”: yt−1.



Inflation



Lagged variables - inflation



Inflation - autocorrelation lag 1



Autocorrelation of order 2

� Autocorrelation of order 2:

r2 = corr(yt , yt−2)

� “Correlation between today’s value and the value two days
back.”

� “Correlation between this month’s value and the value two
months back.”

� “Second lag”: yt−2.



Autocorrelation lag 2



Autocorrelation function

� Autocorrelation of order k

rk= corr(yt , yt−k)

� “Correlation between this month’s value and k months back
in time.”.

� Autocorrelation function (ACF) is rk as a function of the
time delay, k.



Inflation - autokorrelationsfunktion



Autoregressive models

� Autoregressive model of order 1 (AR(1))

yt = β0 + β1yt−1 + εt , εt ∼ N(0, σ2
ε)

� AR(1) is a regression with yt−1 as explanatory variable!

� Fit with the least squares method

yt = β0 + β1yt−1 + εt

� Autoregressiv modell av ordning p (AR(p))

yt = β0 + β1yt−1 + . . .+ βpyt−p + εt , εt ∼ N(0, σ2
ε)

� AR(p) is a multiple regression with the p explanatory
variables yt−1, ..., yt−p .



AR(1) for inflation - R



AR(4) for inflation - R



Autocorrelation function AR(1)

� AR(1)

yt = β0 + β1yt−1 + εt , εt ∼ N(0, σ2
ε)

� Population autocorrelation function (ACF) for AR(1)

ρk = βk , for k = 1, 2, . . .



Simulate AR(p) and estimate ACF

https://observablehq.com/@mattiasvillani/ar-simulation-and-autocorrelation


Autoregressive models - stationarity

� AR(1) is a stationary (non-explosive) model if −1 < β1 < 1.
� Some simulated AR(1) time series:



Prediction with an AR(1) model
� Fitted AR(1)-model

yt = β̂0 + β̂1 · yt−1

� At time T , prediction for next month T + 1

ŷT+1 = β̂0 + β̂1 · yT

� Prediction for T + 2

ŷT+2 = β̂0 + β̂1 · ŷT+1



Prediction with an AR(2) model

� Fitted AR(2)-model

yt = β̂0 + β̂1 · yt−1 + β̂2 · yt−2

� At time T , prediction for next month T + 1

ŷT+1 = β̂0 + β̂1 · yT + β̂2 · yT−1

� Prediction for T + 2

ŷT+2 = β̂0 + β̂1 · ŷT+1 + β̂2 · yT

� Prediction for T + 3

ŷT+3 = β̂0 + β̂1 · ŷT+2 + β̂2 · ŷT+1


