Statistical Theory and Modeling (ST2601) Differentiation and Optimization

Mattias Villani

Department of Statistics Stockholm University

Overview

Course introduction

Functions

The derivative

Optimization of functions

Course introduction

Structure

- ▶ 12+1 Lectures with concepts and theory (Mattias)
- ▶ 8 Exercises with problem solving (Fasna + Ralf)
- 3 Computer labs for a two-part home assignment (Ralf)
- Jour sessions for support (Fasna + Ralf)
- Open Zoom jour sessions every Thursday (Mattias)

Information sources

- Course webpage at <u>https://statisticssu.github.io/STM/</u> with reading instructions, slides, exercises, assignment and other material.
- Athena platform only for: student hand-ins, messages and recorded lectures. Last minute messages on Athena. Download It's learning app.

- Aim: Learn what you need for the <u>Bayesian Learning</u> course.
- Some (frequentist) concepts will be missing. By design.
 - Examination:
 - > Exam, 6 credits (pen and paper, with computer available)
 - ▶ Home assignment, 1.5 credits (groups of 3 students)

Why probabilistic models in data science and AI?

Uncertainty quantification

- **•** Point predictions, best guess.
- ► Interval predictions, range guess.
- Predictive distributions, probability for extremes.
- Decisions under uncertainty need probabilities conditional on data. Bayes. Deep learning's second wave.
- Probability and Statistics are prerequisties for AI. Deep Learning Book
- Generative AI.
- Principled approach to data analysis.

Mathematics

- Some mathematics is needed for statistics.
- Calculations needed for grounding concepts.
- For proofs, see for example: Calculus a long-form text

The internet is also helpful:

Google	site: proofwiki.com derivative of sine function						
	Allt	Bilder	Videor	Böcker	Webb	Nyheter	Ekonomi
	Der	ProofWiki https://proofWiki.org.y.wiki.j.D				:	

ChatGPTs are great companions. But never trust them!
 <u>Wolfram Alpha</u> is great (or Mathematica)

🗱 Wolfram Alpha								
integrate sin(3*x)*exp(-x) from 1 to 3								
NATO PAL LANGUAGE	🖷 ENTENDED KEYRONNE 🏢 EKNWPLES 🏦 UPLOND 🔀 RANDOW							
	More digits 🔀 Ship-by-step solution							
	$\frac{(3) + 3\cos(3))}{\omega} = -0.092511$							

Functions

input = variable/argument.
 output = function value. *y* or *f*(*x*).
 Domain *x* ∈ X, codomain *y* ∈ Y and range (image).

Example functions

The exponential function

Exponential function with base *b*

 $f(x) = b^x$

Compound interest example with 5% interest

money after x years in bank = $100 \cdot 1.05^{x}$

Power function with power *p*

$$f(x) = x^p$$

Natural exponential function with base $e \approx 2.71828$

$$f(x) = e^x$$

Often written as $\exp(x)$.

The exponential function

•• Exponential function

Properties of exponential numbers

The logarithm function

Logarithm with base 10:

$$\log_{10}(1000) = 3 \Longleftrightarrow 1000 = 10^3$$

Logarithm with base 2:

$$\log_2(256) = 8 \iff 256 = 2^8$$

Logarithm with base $e \approx 2.71828$:

$$\log_{e}(256) \approx 5.54517 \iff e^{5.54517} \approx 256$$

Logarithm is the inverse function to the exponential function

$$\log_e(e^x) = x$$

We often write $\ln(x)$ or just $\log(x)$ when using base *e*.

Logarithms are inverses to exponentials

Logarithm is inverse to exponential

Properties of logarithms

Rules for logarithms

$$ln(e) = 1$$

$$log(1) = 0$$

$$ln(x \cdot y) = \ln x + \ln y$$

$$log\left(\frac{x}{y}\right) = \ln x - \ln y$$

$$ln x^{y} = y \ln x$$

$$ln e^{y} = y \ln e = y$$

Logarithms turn products into sums (of logs).Logarithms 'pull down exponents'.

Rate of change of function

- How fast does a function change when x changes from a to a + h?
- **Linear function** c + bx. Rate of change is always b, for any x-value.
- **Non-linear function** y = f(x). Rate of change depends on x.

Average rate of change of function

Average rate of change of a function y = f(x)

The derivative

The derivative is the average rate of change as h → 0.
 Instantaneous rate of change

The derivative

■ Differentiable at x = a: the secant line converges to the tangent line as h → 0

•• Differentiation

Derivative - definition

Definition. *The derivative* of a function f(x) at x = a is

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

provided that the limit exists.

If the limit exists we say that f(x) is differentiable at x = a.

The derivative f'(x) is function of x.

Evaluating f'(a) for some *a* gives the derivative at x = a.

Alternative notation for the derivative

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x)$$
 or $\frac{\mathrm{d}f(x)}{\mathrm{d}x}$

... Function and its derivatives

Derivatives elementary functions

Derivatives of elementary functions $\frac{d}{dx}a = 0 \text{ for constant } a$ $\frac{d}{dx}(a + bx) = b$ $\frac{d}{dx}x^p = px^{p-1}$ $\frac{d}{dx}e^x = e^x$ $\frac{d}{dx}\ln(x) = \frac{1}{x}$ $\frac{d}{dx}\frac{1}{x} = -\frac{1}{x^2}$ $\frac{d}{dx}a^x = a^x\ln(a)$

Derivative of exponential function

Source: Paula_S_15 on r/mathmemes

Derivatives for combined functions

Derivative of a combination of differentiable functions $\frac{d}{dx}a = 0$ for constant a Constant rule $\frac{\mathrm{d}}{\mathrm{d}x}(a \cdot f(x)) = a \cdot f'(x) \text{ for constant } a$ Scaling rule $\frac{\mathrm{d}}{\mathrm{d}x}\big(f(x) + g(x)\big) = f'(x) + g'(x)$ Sum rule $\frac{\mathrm{d}}{\mathrm{d}x}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x)$ Product rule $\frac{d}{dx}\frac{f(x)}{g(x)} = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$ Quotient rule $\frac{\mathrm{d}}{\mathrm{d}x}\frac{1}{g(x)} = -\frac{g'(x)}{(g(x))^2}$ Reciprocal rule $\frac{\mathrm{d}}{\mathrm{d}x}g(h(x)) = g'(h(x)) \cdot h'(x)$ Chain rule

Composite functions? Dude, tell me in code!

Math

$$f(x) = g(h(x))$$

Inverse functions

Bijective function (one-to-one and onto):

- maps distinct x to distinct y (one-to-one)
- \blacktriangleright its range is the whole codomain \mathcal{Y} (onto)

■ Bijective function *y* = *f*(*x*) has an **inverse function** *x* = *f*⁻¹(*y*) such that

$$f^{-1}(f(x)) = x$$

Inverse functions goes 'backwards on f' from y down to x.

•• Function optimization

Second order derivative

Recall: the derivative f'(x) is itself a function of x.

The second order derivative f''(x) is the derivative of f'(x)

$$f''(x) = \frac{\mathrm{d}}{\mathrm{d}x}f'(x)$$

f''(x) measures how fast the derivative changes.

▶ can evaluated f''(a) at any x = a or

considered as a function of x.

Example:
$$f(x) = x^3$$
. $f'(x) = 3x^2$. $f''(x) = 6x$.
 $f(2) = 2^3 = 8$. $f'(2) = 3 \cdot 2^2 = 12$. $f''(2) = 12$.

... Function and its second derivatives

Three uses of second order derivatives

Second derivative test in function optimization
f'(x_{cand}) = 0 and f''(x_{cand}) < 0 then is a (local) maximum.
f'(x_{cand}) = 0 and f''(x_{cand}) > 0 then is a (local) minimum.
f'(x_{cand}) = 0 and f''(x_{cand}) = 0 then test is inconclusive
f''(x_{max}) measures how peaked f(x) is at x_{max} (or min).
Function approximation (second order Taylor).

•• Function optimization

