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Overview

� Random variables recap

� Bernoulli, Geometric and Binomial distributions

� Negative binomial distribution

� Chebychev’s inequality



Probabilities of events
� Probabilities for events A and B in a sample space S.

0 ≤ Pr(A) ≤ 1

� Complement rule

Pr( Ac︸︷︷︸
not A

) = 1− Pr(A)

� Addition rule

Pr(A ∪ B︸ ︷︷ ︸
union

) = Pr(A) + Pr(B)− Pr( A ∩ B︸ ︷︷ ︸
intersection

)

� Multiplication rule

Pr(A ∩ B) = Pr(A|B)︸ ︷︷ ︸
conditional prob

· Pr(B)

� Multiplication rule when A and B are independent

Pr(A ∩ B) = Pr(A) · Pr(AB)



Throwing two dice
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Random variables and probability distributions
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Mean and variance
� Discrete variable with support x ∈ {x1, x2, . . . , xK} and

pk = Pr(X = xk)

� Expected value (mean) is the center of the distribution

E(X) =
K∑

k=1

xk · pk

� Alternative: probability function p(x)

E(X) =
∑

x
x · p(x)

where the sum implicity is over all x ∈ {x1, x2, . . . , xK}.
� Variance measures the spread of the distribution

σ2 = V(X) = E
(
(X − µ)2

)
= E(X2)− µ2

� Standard deviation (same units as X)
σ = S(X) =

√
V(X)



Mean and variance

� The mean is where the probability distribution balances

👆

� The standard deviation measures the spread around µ.



Example: Taking a 500,000 Euro bank loan

� Mean interest rate
1 · 0.017 + 2 · 0.094 + . . .+ 8 · 0.001 ≈ 3.9%

� Mean monthly cost for a 500000 Euro loan:
E(cost) = 417·0.017+833·0.094+. . .+3333·0.001 ≈ 1626 EUR

� Variance monthly cost (in Euro2)
V(cost) = (417−3252)2·0.017+. . .+(3333−1626)2·0.001 ≈ 241368

� Standard deviation monthly cost
S(cost) =

√
241368 ≈ 491 EUR



Law of the unconscious statistician

� Let g(Y ) be a function of the random variable Y .

� The function need not be one-to-one.

� Theorem 3.2 in the WMS book

E
(
g(Y )

)
=

∑
ally

g(y) · p(y)

� This result allows us to compute the mean of the new random
variable g(Y ) without computing its probability distribution.

� Unconscious, since we do it almost without thinking.



Mean and variance of a linear transformation



Mean and variance of a sum



Bernoulli distribution

� Success/Failure. X ∈ {0, 1}
� X ∼ Bernoulli(p), where p is success probability.
� Probability function

p(x) =
{

p for x = 1

q = 1− p for x = 0

� Mean and Variance

E(X) = p
V(X) = pq



Binomial distribution

� X1,X2, . . . ,Xn
ind∼ Bernoulli(p)

� Then Y = X1 + X2 + . . .+ Xn follows a binomial distribution

Y ∼ Binomial(n, p)

� Mean and Variance

E(X) = np
V(X) = npq

� Proof: use that binomial = sum of independent Bernoullis.
� Probability function

p(x) =
(

n
x

)
pxqn−x

� Binomial does not care about the order, so (0, 1, 1) = (1, 0, 1)
etc. The binomial coefficient

(n
x
)

counts the number of ways
we can order x successes in n trials.



Binomial distribution - widget

https://observablehq.com/@mattiasvillani/binomial-distribution


Geometric distribution

� Counts the number of Bernoulli trials until first success.
� X ∼ Geom(p) where X ∈ {1, 2, . . .} and

p(x) = Pr(first success on trial x) =
multiply because indep︷ ︸︸ ︷
q · q · · · q︸ ︷︷ ︸
x−1 failures

· p︸︷︷︸
success

= qx−1·p

� Careful: sometimes X = number of failures until first success.
For example in my widget. Then X ∈ {0, 1, . . .}.

� Mean and Variance

E(X) =
1

p

V(X) =
1− p

p2

� Proof involves the geometric series
∑∞

k=1 qk = q
1−q .



Geometric distribution - widget

https://observablehq.com/@mattiasvillani/geometric-distribution


Poisson distribution

� X ∼ Pois(λ) where X ∈ {0, 1, 2, . . .}

p(x) = λxe−λ

x !

� Approximates Bin(n, p) distribution for large n and small p.
� Mean and Variance

E(X) = λ

V(X)= λ

� Mean = Variance. Can be restrictive for real data.
� Proofs involve (see Taylor approximation in prequel if curious)

ex =

∞∑
n=0

xn

n!



Poisson distribution - widget

https://observablehq.com/@mattiasvillani/poisson-distribution


Poisson approximates Binomial - widget

https://observablehq.com/@mattiasvillani/approximating-the-binomial-distribution


Negative binomial distribution

� X = total number of trials until r successes
� Total = failures + successes
� X ∼ NegBin(r , p) where X ∈ {r , r + 1, r + 2, . . .}

p(x) =
(

x − 1

r − 1

)
prqx−r

� Mean and Variance

E(X) =
r
p V(X) =

r(1− p)
p2

� Alternatively, count X = number of failures before r
successes. Then X ∈ {0, 1, 2, ...} and

E(X) =
r(1− p)

p V(X) =
r(1− p)

p2

This is used in R, see the help ?dnbinom



Negative binomial - mean parameterization

� Parameters p and r come naturally from Bernoulli trials.
� When modeling data, more interpretable to use:

I X = number of failures, and
I parameterization NegBin(r , µ) with the mean µ as an

explicit parameter.

� Set p = r
r+µ . Then, E(X) = µ, so µ is really the mean.

� The variance is

V(X) =
r(1− p)

p2
=

µ

p =
µ(
r

r+µ

) = µ
(
1 +

µ

r

)
so smaller r gives larger variance.

� The parameter r models overdispersion V(X) > E(X).
We can let r be any positive real number, not just an integer.

� As r → ∞, NegBin(r , µ) becomes Pois(µ).



Negative binomial distribution - widget

https://observablehq.com/@mattiasvillani/negative-binomial-distribution


Chebyshev’s inequality

� Normal distribution 68-95-99.7% rule

� Chebyshev: for any distribution with mean µ and variance σ2

Pr
(
|X − µ| ≥ kσ

)
≤ 1

k2

� Chebyshev’s bound is usually not tight:
I Normal: Pr

(
|X − µ| ≥ 2σ

)
≈ 0.0455

I Chebshev: Pr
(
|X − µ| ≥ 2σ

)
≤ 1

22 = 0.25

� Useful for proofs, however.



Chebyshev’s inequality - widget

https://observablehq.com/@mattiasvillani/approximating-the-binomial-distribution

