Statistical Theory and Modeling (ST2601) Discrete random variables

Mattias Villani

Department of Statistics Stockholm University

- Random variables recap
- Bernoulli, Geometric and Binomial distributions
- Negative binomial distribution
- Chebychev's inequality

Probabilities of events

Probabilities for events *A* and *B* in a sample space *S*. $0 \le \Pr(A) \le 1$

Complement rule

$$\Pr(\underbrace{\mathcal{A}^{c}}_{\text{not A}}) = 1 - \Pr(\mathcal{A})$$

Addition rule

$$\Pr(\underbrace{A \cup B}_{\text{union}}) = \Pr(A) + \Pr(B) - \Pr(\underbrace{A \cap B}_{\text{intersection}})$$

Multiplication rule

$$\Pr(A \cap B) = \underbrace{\Pr(A|B)}_{\text{conditional prob}} \cdot \Pr(B)$$

Multiplication rule when A and B are **independent**

 $\Pr(A \cap B) = \Pr(A) \cdot \Pr(AB)$

Throwing two dice

	ŀ	ŀ	Ŀ					ŀ	ŀ	Ŀ					ŀ	ŀ	Ŀ			
$\boxed{\bullet}$	2	3	4	5	6	7	ŀ	2	3	4	5	6	7	ŀ	2	3	4	5	6	7
Ŀ	3	4	5	6	7	8	Ŀ	3	4	5	6	7	8	ŀ	3	4	5	6	7	8
Ŀ	4	5	6	7	8	9	Ŀ	4	5	6	7	8	9	Ŀ	4	5	6	7	8	9
	5	6	7	8	9	10		5	6	7	8	9	10		5	6	7	8	9	10
	6	7	8	9	10	11		6	7	8	9	10	11		6	7	8	9 (10	11
	7	8	9	10	11	12		7	8	9	10	11	12		7	8	9	10	11	12

Random variables and probability distributions

Mean and variance

Discrete variable with support $x \in \{x_1, x_2, \dots, x_K\}$ and $p_k = \Pr(X = x_k)$

Expected value (mean) is the **center** of the distribution

$$\mathbb{E}(X) = \sum_{k=1}^{K} x_k \cdot p_k$$

Alternative: probability function p(x)

$$\mathbb{E}(X) = \sum_{x} x \cdot p(x)$$

where the sum implicity is over all $x \in \{x_1, x_2, \dots, x_K\}$.

Variance measures the spread of the distribution

$$\sigma^2 = \mathbb{V}(X) = \mathbb{E}\left((X - \mu)^2\right) = \mathbb{E}(X^2) - \mu^2$$

Standard deviation (same units as X)

$$\sigma = \mathbb{S}(X) = \sqrt{\mathbb{V}(X)}$$

Mean and variance

The mean is where the probability distribution balances

The standard deviation measures the spread around μ .

Example: Taking a 500,000 Euro bank loan

Mean interest rate

 $1 \cdot 0.017 + 2 \cdot 0.094 + \ldots + 8 \cdot 0.001 \approx 3.9\%$

Mean monthly cost for a 500000 Euro loan:

 $\mathbb{E}(\text{cost}) = 417 \cdot 0.017 + 833 \cdot 0.094 + \ldots + 3333 \cdot 0.001 \approx 1626 \text{ EUR}$

Variance monthly cost (in Euro²)

 $\mathbb{V}(\mathsf{cost}) = (417 - 3252)^2 \cdot 0.017 + \ldots + (3333 - 1626)^2 \cdot 0.001 \approx 241368$

Standard deviation monthly cost

 $\mathbb{S}(\text{cost}) = \sqrt{241368} \approx 491 \text{ EUR}$

Law of the unconscious statistician

Let g(Y) be a function of the random variable Y.

The function need **not** be one-to-one.

Theorem 3.2 in the WMS book

$$\mathbb{E}(g(Y)) = \sum_{\text{all}y} g(y) \cdot p(y)$$

- This result allows us to compute the mean of the new random variable g(Y) without computing its probability distribution.
- Unconscious, since we do it almost without thinking.

Mean and variance of a linear transformation

Mean and variance of a linear transformationShift with constant c $\mathbb{E}(X+c) = \mathbb{E}(X) + c$ $\mathbb{V}(X+c) = \mathbb{V}(X)$ Scaling with constant a $\mathbb{E}(a \cdot X) = a \cdot \mathbb{E}(X)$ $\mathbb{V}(a \cdot X) = a^2 \mathbb{V}(X)$ Linear transformation $\mathbb{E}(c+a \cdot X) = c+a \cdot \mathbb{E}(X)$ $\mathbb{V}(c+a \cdot X) = a^2 \mathbb{V}(X)$

Mean and variance of a sum

Mean and variance of a sum of independent variables

If X and Y are independent random variables, then

Sum of two random variables

 $\mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y)$

 $\mathbb{V}(X+Y) = \mathbb{V}(X) + \mathbb{V}(X)$

Linear transformation

 $\mathbb{E}(a \cdot X + b \cdot Y) = a \cdot \mathbb{E}(X) + b \cdot \mathbb{E}(Y)$ $\mathbb{V}(a \cdot X + b \cdot Y) = a^2 \mathbb{V}(X) + b^2 \mathbb{V}(Y)$

If X_1, \ldots, X_n are independent random variables, then

Sum of *n* random variables

 $\mathbb{E}(X_1 + \ldots + X_n) = \mathbb{E}(X_1) + \ldots + \mathbb{E}(X_n)$ $\mathbb{V}(X_1 + \ldots + X_n) = \mathbb{V}(X_1) + \ldots + \mathbb{V}(X_n)$

Bernoulli distribution

Success/Failure. X ∈ {0,1}
X ~ Bernoulli(p), where p is success probability.
Probability function

$$p(x) = \begin{cases} p & \text{for } x = 1 \\ q = 1 - p & \text{for } x = 0 \end{cases}$$

Mean and Variance

$$\mathbb{E}(X) = p$$
$$\mathbb{V}(X) = pq$$

Binomial distribution

Mean and Variance

$$\mathbb{E}(X) = np$$

 $\mathbb{V}(X) = npq$

Proof: use that binomial = sum of independent Bernoullis.

Probability function

$$p(x) = \binom{n}{x} p^{x} q^{n-x}$$

Binomial does not care about the order, so (0, 1, 1) = (1, 0, 1) etc. The **binomial coefficient** $\binom{n}{x}$ counts the number of ways we can order x successes in n trials.

Binomial distribution - widget

Geometric distribution

Counts the number of Bernoulli trials until first success.
 X ~ Geom(p) where X ∈ {1, 2, ...} and

$$p(x) = \Pr(\text{first success on trial } x) = \underbrace{\overbrace{q \cdot q \cdots q}^{\text{multiply because indep}}_{x-1 \text{ failures success}} = q^{x-1} \cdot p$$

Careful: sometimes X = number of failures until first success. For example in my widget. Then $X \in \{0, 1, ...\}$.

Mean and Variance

$$\mathbb{E}(X) = \frac{1}{p}$$
$$\mathbb{V}(X) = \frac{1-p}{p^2}$$

Proof involves the geometric series $\sum_{k=1}^{\infty} q^k = \frac{q}{1-q}$.

Geometric distribution - widget

Poisson distribution

•
$$X \sim \text{Pois}(\lambda)$$
 where $X \in \{0, 1, 2, ...\}$
 $p(x) = \frac{\lambda^x e^{-\lambda}}{x!}$

Approximates Bin(n, p) distribution for large n and small p.
 Mean and Variance

$$\mathbb{E}(X) = \lambda$$
$$\mathbb{V}(X) = \lambda$$

Mean = Variance. Can be restrictive for real data.

Proofs involve (see Taylor approximation in prequel if curious)

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$

Poisson distribution - widget

Poisson approximates Binomial - widget

Negative binomial distribution

X = total number of trials until r successes

Total = failures + successes

 $X \sim \operatorname{NegBin}(r, p) \text{ where } X \in \{r, r+1, r+2, \ldots\}$

$$p(x) = \binom{x-1}{r-1} p^r q^{x-r}$$

Mean and Variance

$$\mathbb{E}(X) = rac{r}{p}$$
 $\mathbb{V}(X) = rac{r(1-p)}{p^2}$

Alternatively, count X = number of failures before r successes. Then $X \in \{0, 1, 2, ...\}$ and

$$\mathbb{E}(X) = \frac{r(1-p)}{p} \qquad \qquad \mathbb{V}(X) = \frac{r(1-p)}{p^2}$$

This is used in R, see the help ?dnbinom

Negative binomial - mean parameterization

Parameters p and r come naturally from Bernoulli trials.
When modeling data, more interpretable to use:

- $\blacktriangleright X =$ **number of failures**, and
- ▶ parameterization NegBin (r, μ) with the mean μ as an explicit parameter.

Set
$$p = \frac{r}{r+\mu}$$
. Then, $\mathbb{E}(X) = \mu$, so μ is really the mean.
The variance is

$$\mathbb{V}(X) = \frac{r(1-p)}{p^2} = \frac{\mu}{p} = \frac{\mu}{\left(\frac{r}{r+\mu}\right)} = \mu\left(1+\frac{\mu}{r}\right)$$

so smaller r gives larger variance.

The parameter *r* models **overdispersion** $\mathbb{V}(X) > \mathbb{E}(X)$. We can let *r* be any positive real number, not just an integer.

As
$$r \to \infty$$
, NegBin (r, μ) becomes Pois (μ) .

Negative binomial distribution - widget

Chebyshev's inequality

Chebyshev: for any distribution with mean μ and variance σ^2

$$\Pr\bigl(|X-\mu| \ge k\sigma\bigr) \le \frac{1}{k^2}$$

Chebyshev's bound is usually not tight:

▶ Normal: $\Pr(|X - \mu| \ge 2\sigma) \approx 0.0455$

• Chebshev: $\Pr(|X - \mu| \ge 2\sigma) \le \frac{1}{2^2} = 0.25$

Useful for proofs, however.

Chebyshev's inequality - widget

