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Overview

� Joint, marginal and conditional distributions for discrete
variables

� Double integrals

� Joint, marginal and conditional distributions for
continuous variables

� Independent variables

� Covariance and Correlation

� Conditional expectation



Joint distribution - discrete variables

� Joint probability function for two discrete X and Y

p(x , y) = Pr(X = x ,Y = y)

� Example: Roll two dice.

I X = the number of dice with 5

I Y = sum of two dice
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Joint distribution - discrete variables



Marginal distribution - discrete variables

� Marginal distribution pX (x) for X : probability distribution
for X regardless of what happens to Y .

pX (x) =
∑
all y

p(x , y)

� Marginal distribution pY (y) for Y

pY (y) =
∑
all x

p(x , y)
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Marginal distribution - discrete variables

pX (x) =
∑

y
p(x , y) =


25
36 for x = 0
10
36 for x = 1
1
36 for x = 2

(1)



Marginal distribution - discrete variables



Single integral for function f (x)
� Integral = area under curve y = f (x)

n∑
i=1

f (x?
i )∆xi →

∫ b

a
f (x)dx



Double integral for bivariate function f (x , y)

� Double integral = volume under surface z = f (x , y)



Bivariate integrals

m∑
i=1

n∑
j=1

f (x?
i , y?

j )∆xi∆yj →
∫ d

c

∫ b

a
f (x , y)dxdy



Double integrals in action

� Two-step approach:

I first integrate with respect to x while treating y as a constant

I then integrate with respect to y .

� Example: f (x , y) = x2y , integrate over (x , y) ∈ (0, 1)× (0, 1)∫ 1

0

∫ 1

0

x2ydxdy =

∫ 1

0

[
1

3
x3y

]1
0

dy =

∫ 1

0

(
1

3
y
)

dy =

[
1

2 · 3
y2

]1
0

=
1

6



Double integrals - non-rectangular integration region

� Integration region may not be rectangular.

� f (x , y) = x2y , integrate over triangular region:

(x , y) ∈ (0, 1)× (0, 1) and x ≤ y

∫ 1

0

∫ y

0

x2ydxdy =

∫ 1

0

[
1

3
x3y

]y

0

dy =

∫ 1

0

(
1

3
y4

)
dy =

[
1

5 · 3y5

]1

0

=
1

15

� General notation where R is some region in (x , y)-space∫∫
R

f (x , y)dxdy



Joint cumulative distribution function
� Joint cumulative distribution for two random variables X

and Y
F (x , y) = Pr(X ≤ x ,Y ≤ y)

� Marginal distributions are special cases:
F (x ,∞) = Pr(X ≤ x ,Y ≤ ∞) = FX (x)
F (∞, y) = Pr(X ≤ ∞,Y ≤ y) = FY (y)

� Other properties
F (−∞, y) = F (x ,−∞) = F (−∞,−∞) = 0 and F (∞,∞) = 1



Joint density function

� Joint density function for two random variables X and Y

f (x , y)

Pr(a ≤ X ≤ b, c ≤ Y ≤ d) =
∫ d

c

∫ b

a
f (x , y)dxdy

� Properties f (x , y) ≥ 0 and∫ ∞

−∞

∫ ∞

−∞
f (x , y)dxdy = 1

� Example: f (x , y) = 6x2y for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1.
Check: ∫ ∞

−∞

∫ ∞

−∞
6x2y dxdy =

∫ 1

0

[
6x2 1

2
y2

]1
0

dx

=

∫ 1

0
3x2 dx =

[
x3
]1
0
= 1



Joint density function



Marginal distributions

� Marginal density for X

fX (x) =
∫ ∞

−∞
f (x , y)dy

� Marginal density for Y

fY (y) =
∫ ∞

−∞
f (x , y)dx

� Example: Marginal density for X

fX (x) =
∫

6x2y dy =

[
6x2 1

2
y2

]1
0

= 3x2

� Example: Marginal density for Y

fY (y) =
∫

6x2y dx =
[
2x3y

]1
0
= 2y



Conditional distributions

� Conditional probability events for Pr(B) > 0

Pr(A|B) =
Pr(A ∩ B)

Pr(B)

� Conditional distribution of X given Y = y

pX |Y (x |Y = y) = p(x , y)
pY (y)

� Continuous X and Y

fX |Y (x |y) = f (x , y)
fY (y)

� Example: f (x , y) = 6x2y and fY (y) = 2y

fX |Y (x |y) = f (x , y)
fY (y) =

6x2y
2y = 3x2



Marginal-conditional decomposition
� Conditional distribution

fX |Y (x |y) = f (x , y)
fY (y)

� Marginal-conditional decomposition of a joint density

f (x , y)︸ ︷︷ ︸
joint

= fX |Y (x |y)︸ ︷︷ ︸
conditional

· fY (y)︸ ︷︷ ︸
marginal

� This is a great way to build models!
� Example: the joint density

f (x , y) = 1

x e−
(

y
x +x

)
0 < x < ∞, 0 < y < ∞

X∼ Expon(1)
Y |(X = x)∼ Expon(x)

� The conditional Y |(X = x) doesn’t fit a scatter of y and x?
Swap it out with something else, maybe a Gamma?



Independent random variables

� Independent events if and only if

Pr(A|B) = Pr(A)

alternatively
Pr(A ∩ B) = Pr(A) · Pr(B)

� Knowing that B has occured has no affect on my beliefs
about A.

� Two random variables are independent if and only if

pX |Y (x |Y = y) = pX (x)

alternatively
p(x , y) = pX (x) · pY (y)

� Example: f (x , y) = 6x2y , with fX (x) = 3x2 and fY (y) = 2y .
X and Y are independent since

fX (x)fY (y) = 3x2 · 2y = 6x2y = f (x , y)



Multivariate distributions

� Joint probability density for X1,X2, . . . ,Xn

f (x1, x2, . . . , xn)

� Marginal distribution for X1

fX1(x1) =
∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞︸ ︷︷ ︸
n−1 integrals

f (x1, x2, . . . , xn)dx2 · · · dxn︸ ︷︷ ︸
all except dx1

� Marginal distribution for (X1,X2)

fX1,X2(x1, x2) =
∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞︸ ︷︷ ︸
n−2 integrals

f (x1, x2, . . . , xn) dx3 · · · dxn︸ ︷︷ ︸
all except dx1 and dx2

� Conditional distribution for X1

f (x1|X2 = x2, . . . ,Xn = xn) =
f (x1, x2, . . . , xn)

f (x2, . . . , xn)



Covariance and Correlation

� Covariance between X and Y

Cov(X ,Y ) = E ((X − µX )(Y − µY ))

where µX = E(X) and µY = E(Y ).

� Correlation between X and Y

ρXY =
Cov(X ,Y )

σXσY

Negative CovariancePositive Covariance



Covariance measures linear dependence

� Covariance/Correlation - measures linear dependence.
� Independent X and Y implies zero correlation ρXY = 0

� Zero correlation does not in general imply independence.
� Dependence can be non-linear.
� Example with ρXY = 0:

X ∼ N(0, 1) and Y |(X = x) ∼ N(x2, 1)



Conditional expectation

� Conditional expectation

E(Y |X = x) =
{∑

y y · p(y |x) if x and y discrete∫
y · f (y |x)dy if x and y continuous

� Regression and classification models the conditional
expectation.

� Computing the expectation E(Y ) directly is sometimes hard.

� But the conditional expectation E(Y |X = x) may be simpler.

� Two-step approach:
1 Compute conditional expectation E(Y |X)

2 Undo the conditioning on X with EX

� Law of iterated expectation

E(Y ) = EX
(
EY |X (Y |X)

)



Law of iterated expectation in action

� Example:

X∼ Expon(1)
Y |(X = x)∼ Expon(x)

� Recall: if X ∼ Expon(β) then E(X) = β.

� Computing E(Y ) directly requires marginal fY (y).
� But the conditional expectation is easy:

EY |X (Y |X) = X

� Finally, we undo the conditioning on X

E(Y ) = EX
(
EY |X (Y |X)

)
= EX (X) = 1

� Ta-da!


