Statistical Theory and Modeling (ST2601) Joint distributions

Mattias Villani

Department of Statistics Stockholm University

Overview

Joint, marginal and conditional distributions for discrete variables

Double integrals

Joint, marginal and conditional distributions for continuous variables

Independent variables

Covariance and Correlation

Conditional expectation

Joint distribution - discrete variables

I Joint probability function for two discrete X and Y

$$p(x, y) = \Pr(X = x, Y = y)$$

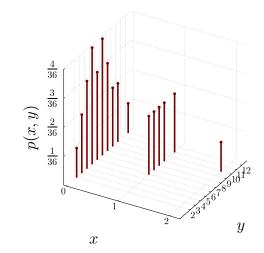
Example: Roll two dice.

 $\blacktriangleright X = \text{the number of dice with } 5$

 $\succ Y = \text{sum of two dice}$

	$X \setminus Y$	2	3	4	5	6	7	8	9	10	11	12
-	0	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{\frac{3}{36}}{\frac{2}{36}}$	$\frac{4}{36}$	$\frac{\frac{3}{36}}{\frac{2}{36}}$	$\frac{\frac{2}{36}}{\frac{2}{36}}$	$\frac{2}{36}$	$\frac{\frac{0}{36}}{\frac{2}{36}}$	$\frac{1}{36}$
	1	0	0	0	0	$\frac{2}{36}$	$\frac{\frac{4}{36}}{\frac{2}{36}}$	$\frac{2}{36}$	$\frac{2}{36}$	0	$\frac{2}{36}$	0
	2	0	0	0	0	0	0	0	0	$\frac{1}{36}$	0	0

Joint distribution - discrete variables



Marginal distribution - discrete variables

Marginal distribution p_X(x) for X: probability distribution for X regardless of what happens to Y.

$$p_X(x) = \sum_{\text{all } y} p(x, y)$$

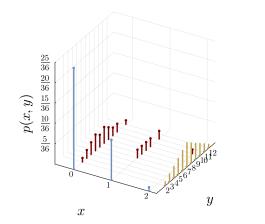
Marginal distribution $p_Y(y)$ for Y

$$p_Y(y) = \sum_{\text{all } x} p(x, y)$$

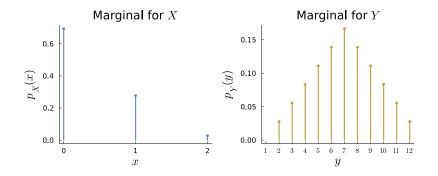
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-1 $r < 7$	12	11	10	9	8	7	6	5	4	3	2	$X \setminus Y$
2 0 0 0 0 0 0 0 $\frac{1}{36}$ 0 0	$\frac{25}{36}$ $\frac{10}{36}$			$\frac{2}{36}$	$\frac{\frac{2}{36}}{2}$	$\frac{\frac{3}{36}}{2}$	$\frac{\frac{4}{36}}{2}$	$\frac{\frac{3}{36}}{2}$					0
$p(y)$ $\frac{1}{12}$ $\frac{2}{12}$ $\frac{3}{12}$ $\frac{4}{12}$ $\frac{5}{12}$ $\frac{6}{12}$ $\frac{5}{12}$ $\frac{4}{12}$ $\frac{3}{12}$ $\frac{2}{12}$ $\frac{1}{12}$	$\frac{\overline{36}}{\frac{1}{36}}$	0		1						0	0	0	2
r''(f') = 36 - 36 - 36 - 36 - 36 - 36 - 36 - 36		$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$	<i>p</i> (<i>y</i>)

Marginal distribution - discrete variables

$$p_X(x) = \sum_{y} p(x, y) = \begin{cases} \frac{25}{36} & \text{for } x = 0\\ \frac{10}{36} & \text{for } x = 1\\ \frac{1}{36} & \text{for } x = 2 \end{cases}$$
(1)

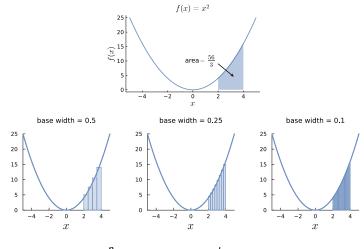


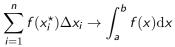
Marginal distribution - discrete variables



Single integral for function f(x)

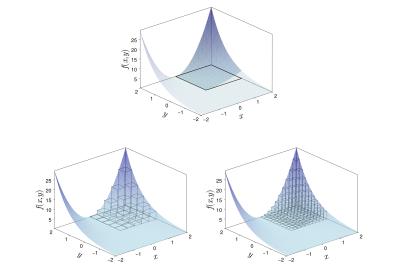
Integral = area under curve y = f(x)



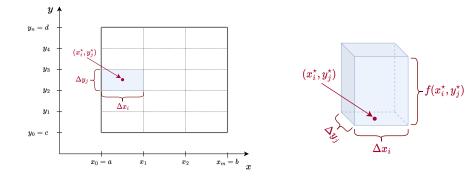


Double integral for bivariate function f(x, y)

Double integral = volume under surface z = f(x, y)



Bivariate integrals



$$\sum_{i=1}^{m} \sum_{j=1}^{n} f(x_i^{\star}, y_j^{\star}) \Delta x_i \Delta y_j \to \int_{c}^{d} \int_{a}^{b} f(x, y) \mathrm{d}x \mathrm{d}y$$

Two-step approach:

first integrate with respect to x while treating y as a constant
then integrate with respect to y.

Example: $f(x, y) = x^2 y$, integrate over $(x, y) \in (0, 1) \times (0, 1)$

$$\int_0^1 \int_0^1 x^2 y \mathrm{d}x \mathrm{d}y = \int_0^1 \left[\frac{1}{3}x^3y\right]_0^1 \mathrm{d}y = \int_0^1 \left(\frac{1}{3}y\right) \mathrm{d}y = \left[\frac{1}{2\cdot 3}y^2\right]_0^1 = \frac{1}{6}$$

Double integrals - non-rectangular integration region

Integration region may not be rectangular.

f(x, y) = x^2y , integrate over triangular region:

$$(x,y) \in (0,1) \times (0,1)$$
 and $x \leq y$

$$\int_0^1 \int_0^y x^2 y \mathrm{d}x \mathrm{d}y = \int_0^1 \left[\frac{1}{3}x^3y\right]_0^y \mathrm{d}y = \int_0^1 \left(\frac{1}{3}y^4\right) \mathrm{d}y = \left[\frac{1}{5\cdot 3}y^5\right]_0^1 = \frac{1}{15}$$

General notation where R is some region in (x, y)-space

$$\iint_R f(x,y) \mathrm{d}x \mathrm{d}y$$

Joint cumulative distribution function

Joint cumulative distribution for two random variables X and Y

$$F(x, y) = \Pr(X \le x, Y \le y)$$

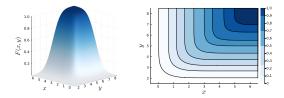
Marginal distributions are special cases:

$$F(x,\infty) = \Pr(X \le x, Y \le \infty) = F_X(x)$$

$$F(\infty, y) = \Pr(X \le \infty, Y \le y) = F_Y(y)$$

Other properties

 $F(-\infty,y) = F(x,-\infty) = F(-\infty,-\infty) = 0$ and $F(\infty,\infty) = 1$



Joint density function

Joint density function for two random variables X and Y

$$\Pr(a \le X \le b, c \le Y \le d) = \int_c^d \int_a^b f(x, y) \mathrm{d}x \mathrm{d}y$$

f(x, y)

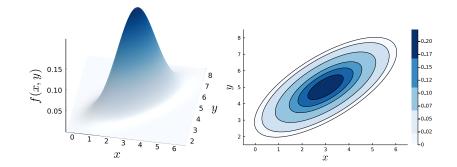
Properties $f(x, y) \ge 0$ and

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \mathrm{d}x \mathrm{d}y = 1$$

Example: $f(x, y) = 6x^2y$ for $0 \le x \le 1$ and $0 \le y \le 1$. Check:

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} 6x^2 y \, \mathrm{d}x \mathrm{d}y = \int_{0}^{1} \left[6x^2 \frac{1}{2} y^2 \right]_{0}^{1} \mathrm{d}x$$
$$= \int_{0}^{1} 3x^2 \, \mathrm{d}x = \left[x^3 \right]_{0}^{1} = 1$$

Joint density function



Marginal distributions

Marginal density for X

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) \mathrm{d}y$$

$$f_{\mathbf{Y}}(\mathbf{y}) = \int_{-\infty}^{\infty} f(\mathbf{x}, \mathbf{y}) \mathrm{d}\mathbf{x}$$

Example: Marginal density for X

$$f_X(x) = \int 6x^2 y \, \mathrm{d}y = \left[6x^2 \frac{1}{2}y^2\right]_0^1 = 3x^2$$

Example: Marginal density for Y

$$f_{Y}(y) = \int 6x^{2}y \, dx = [2x^{3}y]_{0}^{1} = 2y$$

Conditional distributions

Conditional probability events for Pr(B) > 0 $Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)}$

Conditional distribution of X given Y = y

$$p_{X|Y}(x|Y=y) = \frac{p(x,y)}{p_Y(y)}$$

Continuous X and Y

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$$

Example: $f(x, y) = 6x^2y$ and $f_Y(y) = 2y$

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)} = \frac{6x^2y}{2y} = 3x^2$$

Marginal-conditional decomposition

Conditional distribution

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$$

Marginal-conditional decomposition of a joint density

This is a great way to build models!Example: the joint density

$$f(x,y) = \frac{1}{x} e^{-\left(\frac{y}{x} + x\right)} \qquad 0 < x < \infty, 0 < y < \infty$$

$$X \sim \text{Expon}(1)$$

 $Y|(X = x) \sim \text{Expon}(x)$

The conditional Y | (X = x) doesn't fit a scatter of y and x? Swap it out with something else, maybe a Gamma?

Independent random variables

Independent events if and only if

 $\Pr(A|B) = \Pr(A)$

alternatively

$$\Pr(A \cap B) = \Pr(A) \cdot \Pr(B)$$

Knowing that *B* has occured has no affect on my beliefs about *A*.

Two random variables are independent if and only if

$$p_{X|Y}(x|Y=y) = p_X(x)$$

alternatively

$$p(x,y) = p_X(x) \cdot p_Y(y)$$

Example: $f(x, y) = 6x^2y$, with $f_X(x) = 3x^2$ and $f_Y(y) = 2y$. X and Y are independent since

$$f_X(x)f_Y(y) = 3x^2 \cdot 2y = 6x^2y = f(x, y)$$

Multivariate distributions

Joint probability density for X_1, X_2, \dots, X_n $f(x_1, x_2, \dots, x_n)$

Marginal distribution for X₁

$$f_{X_1}(x_1) = \underbrace{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x_1, x_2, \dots, x_n) \underbrace{\mathrm{d}x_2 \cdots \mathrm{d}x_n}_{\text{all except } \mathrm{d}x_1}}_{n-1 \text{ integrals}}$$

Marginal distribution for (X_1, X_2)

$$f_{X_1,X_2}(x_1,x_2) = \underbrace{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x_1,x_2,\ldots,x_n)}_{n-2 \text{ integrals}} \operatorname{all except } \operatorname{d}_{x_1} \operatorname{and } \operatorname{d}_{x_2}$$

Conditional distribution for X₁

$$f(x_1|X_2 = x_2, \dots, X_n = x_n) = \frac{f(x_1, x_2, \dots, x_n)}{f(x_2, \dots, x_n)}$$

Covariance and Correlation

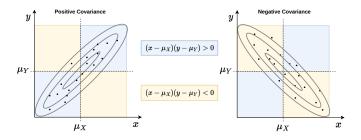
Covariance between X and Y

$$\operatorname{Cov}(X, Y) = \mathbb{E}\left((X - \mu_X)(Y - \mu_Y)\right)$$

where $\mu_X = \mathbb{E}(X)$ and $\mu_Y = \mathbb{E}(Y)$.

Correlation between X and Y

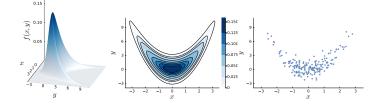
$$\rho_{XY} = \frac{\operatorname{Cov}(X, Y)}{\sigma_X \sigma_Y}$$



Covariance measures linear dependence

Covariance/Correlation - measures linear dependence.
 Independent X and Y implies zero correlation ρ_{XY} = 0
 Zero correlation does not in general imply independence.
 Dependence can be non-linear.
 Example with ρ_{XY} = 0:

 $X \sim N(0,1)$ and $Y|(X=x) \sim N(x^2,1)$



Conditional expectation

Conditional expectation

$$\mathbb{E}(Y|X = x) = \begin{cases} \sum_{y} y \cdot p(y|x) & \text{if } x \text{ and } y \text{ discrete} \\ \int y \cdot f(y|x) dy & \text{if } x \text{ and } y \text{ continuous} \end{cases}$$

- Regression and classification models the conditional expectation.
- Computing the expectation $\mathbb{E}(Y)$ directly is sometimes hard.
 - But the conditional expectation $\mathbb{E}(Y|X = x)$ may be simpler.
 - Two-step approach:
 - **1** Compute conditional expectation $\mathbb{E}(Y|X)$
 - **2** Undo the conditioning on X with \mathbb{E}_X
- Law of iterated expectation

$$\mathbb{E}(Y) = \mathbb{E}_X \left(\mathbb{E}_{Y|X}(Y|X) \right)$$

Law of iterated expectation in action

Example:

$$X \sim \text{Expon}(1)$$

 $Y|(X = x) \sim \text{Expon}(x)$

Recall: if $X \sim \text{Expon}(\beta)$ then $\mathbb{E}(X) = \beta$.

Computing E(Y) directly requires marginal f_Y(y).
 But the conditional expectation is easy:

$$\mathbb{E}_{Y|X}(Y|X) = X$$

Finally, we undo the conditioning on X

$$\mathbb{E}(Y) = \mathbb{E}_{X} \left(\mathbb{E}_{Y|X}(Y|X) \right) = \mathbb{E}_{X} \left(X \right) = 1$$

