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Overview

B Stochastic convergence

B Law of large numbers

B Central limit theorem

B Transformations of random variables

B Monte Carlo simulation



Stochastic convergence - asymptotics

B Performance of a statistical method in large samples n — oc.
[l Can be a good approximation for finite samples.
B Sequence of random variables Xi, Xo, ..., X),.

B Example: sample mean

B What happens with X, as n — oo?

» Does it concentrate on a single value?

» Does the distribution of X, stabilize?



Convergence in distribution

[l The sequence X1, Xo, ..., X, converges in distribution to
the random variable X if “the cdf of X, starts to look like
the cdf of X when n gets large.

Fn(x) is the cdf of X,
B F(x) is the cdf of X

Definition. A sequence of random variables X1, ..., X, converges
in distribution to the random variable X, if

F.(x) = F(x) as n— oo,

for all x where F(-) is continuous, where F,(x) and F(x) are the
cumulative distribution functions (cdf) of Xy, and X, respectively.
We then write X, —d> X.




NegBin converges in distribution to Poisson

NegBin(r, ) A Pois(pu) as r — oo

pdf
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NegBin converges in distribution to Poisson
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Student-t converges in distribution to N(0, 1)

pdf

0.4+

03r

=02}
=8

0.1

0.0t




Student-t converges in distribution to N(0, 1)

cdf
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Student-t converges in distribution to N(0, 1)
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Limit of a deterministic sequence

B Mathematical limit at infinity for deterministic sequences
lim x, =L
n—oo
means that we can make sure that
|xn — L| <€ = xn€ (L—¢,L+e)
for any € > 0, by choosing a large enough n.

B Example: x, = (1 + %)n with lim,_o0 X, = € =~ 2.7183.

W X, are random variables, cannot guarantee that | X, — L| < e.



Limit of a deterministic sequence
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Convergence in probability

B The sequence Xi, Xo,..., X, converges in probability to the
constant c if “the distribution of X, concentrates around
c” when n gets large.

Definition. A sequence of random variables Xy, .. ., X, converges
in probability to a constant c, if for all e > 0

Pr(|X, —c|>€) =0 as n— oo

We then write X, L

B We can also have convergence in probability to a random
variable X instead of a constant; see the prequel book.



Convergence in probability

B 50% and 95% probability intervals.
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Law of large numbers
@ The law of large numbers tells us that the sample mean
1 n
Xo =~ ;X,-
=

converges in probability to the population mean pu = E(X;)
as n — oo.

Theorem 4 (law of large numbers).
For independent random variables X;, Xo, . . . with finite mean
y = E(X) and finite variance we have

)_(n—p>y

where L» denotes convergence in probability, i.e., for all € > 0

Pr(|Xo—p|>2€) =0 as n— oo (5-3)




Law

of large numbers - widget
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https://observablehq.com/@mattiasvillani/law-large-numbers#userinputs

Central limit theorem

B The central limit theorem tells us that the sample mean X,
converges in distribution to a normal distribution.

Theorem 6 (central limit theorem - informal version).
Let X1, Xy, ... be iid random variables with finite mean y and
variance o*. Then for large n,

X, TR N(p,0%/n)

B Have to standardize to avoid a degenerate distribution:

X"_N:\/E()_(n_l‘)

Sl

M Formal version

Theorem 5 (central limit theorem).

Let X1,Xo, ... beiid random variables with finite mean y and

variance o2. Then _
Xn—p
a/vn

d TR
as n — oo, where — denotes convergence in distribution.

4 N(0,1),




Central limit theorem

n =100 n = 1000
=
=)
El
g
Kl
5
E 2 4;101;; 42 o0 o2 s 42 0 2 4
F(rn*u)/o Iz, — n(z, —p)/o iz, —p)/o
n =100 n = 1000
I
2
]
g
g
>
%
|
9]
00255075100 2 o 2 4 a2 o0 o2 4
@, — p)/o ln @, = p)/o iz, —p)/o
n =100 n = 1000
=
<
S
)
=
]
8
M
C151.0-0500 05 10 1.5 3-2-10 1 e

4 2 0 2 a4 42 o0 o2 4
(@, = p)/e (= p)/ (@, = p)/o (e, —p)/e



Central limit theorem - widget

dtadisubution: [z
s
samplesizen:  [158 —

a single dataset simulated from the data distriution distrbution of the sample mean from samples with =158 observations.
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Transformations of random variables

B Known: the distribution of X is f(x)

B Wanted: the distribution of a transformed variable

Y =g(X)

B Why? We often need to transform the data.
I Bayes: we often need to transform parameters.

B Examples:
» Linear: Y =a+b-X
> Log: Y =log(X)

> Logit: Y =log (%)



Transformations of random variables - example

B Example:
> pdf: fx(x) =3x2for 0 < x <1
> cdf: Fx(x) = fo 3t?de = [t ]0 = x3

B Linear transformation: Y =2 + 3X
B cdf of YV:

Fy(y)=Pr(Y <y)=Pr(2+3X <y)=Pr <x < ﬂ)

3
y—2\ _ (y-2\°
-5 (57) - (%)
B pdfof Y

d d -2 —2\ 1
w0 = gyP =6 () =4 (57) 5
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Transformations of random variables - example

B A little more general: linear transformation: Y = a + bX

W pdfof Y

FY(Y):PT(YSy)=Pr(a+bX§y):Pr<X§ y;a) — Fy (y;a)

M cdf of Y
_d _dp Y=y g (r=2). L
) =g, B0 =g (57) =5 (57) 5
B We computed the inverse transformation, i.e. solved for x
—a
y =a-+ bx = x=7 b

B General: if g(x) is an invertible function

y=gx) <= x=g'(y)

where g71(y) is the inverse function.



Transformations of random variables

Transforming variables - change-of-variable formula

Let X ~ fy(x) and
Y =g(X)

an invertible monotonically increasing or decreasing transfor-
mation with continuous derivative and inverse transformation

X =g (Y).

The density of Y is then

) = fae(57 W) |58

B If Y = g(X) is piecewise monotone, handle each piece
separately and sum up.

B Example 3 on Wikipedia on transformations uses this on:
» X~ N(,1)
» Y = X2 which is monotone on (—o0,0) and [0, 00)
» Result: Y ~ x2(v=1)



https://en.wikipedia.org/wiki/Random_variable#Example_3

Transformations of random variables - example

M Let X ~ N(u,o?) with pdf

W Let Y = exp(X) with inverse transformation X = log(Y) with
derivative

B Then

fy (y) = fx (log(y))- %Z Wiz exp< ! 5 (log(y) — u)2)

for y > 0.
B We have shown: if X ~ N(p,0?) then

exp(X) ~ LogNormal(y, o%)



Monte Carlo simulation

W Let X ~ f(x).

B Compute E (g(X)) for some function Y = g(X) by simulation.
B Key idea: law of large numbers.

W Simulate xi,...xy < f(x)

3 glx) B E(g(X)

i=1

1
m

B Monte Carlo to compute tail probability Pr(X > c)

£0) = {1 if x > ¢

0 ifx<c



Monte Carlo accuracy via the CLT

W Central limit theorem (informal)

1 approx O'2
il ) APRIDE Z
- E g(xi) (u, m
where
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