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Overview

� Stochastic convergence

� Law of large numbers

� Central limit theorem

� Transformations of random variables

� Monte Carlo simulation



Stochastic convergence - asymptotics

� Performance of a statistical method in large samples n → ∞.

� Can be a good approximation for finite samples.

� Sequence of random variables X1,X2, . . . ,Xn.

� Example: sample mean

X̄n =
1

n

n∑
i=1

Xi

� What happens with Xn as n → ∞?

I Does it concentrate on a single value?

I Does the distribution of Xn stabilize?



Convergence in distribution

� The sequence X1,X2, . . . ,Xn converges in distribution to
the random variable X if “the cdf of Xn starts to look like
the cdf of X” when n gets large.

� Fn(x) is the cdf of Xn

� F (x) is the cdf of X



NegBin converges in distribution to Poisson

NegBin(r , µ) d→ Pois(µ) as r → ∞



NegBin converges in distribution to Poisson



NegBin converges in distribution to Poisson



Student-t converges in distribution to N(0, 1)



Student-t converges in distribution to N(0, 1)



Student-t converges in distribution to N(0, 1)



Limit of a deterministic sequence

� Mathematical limit at infinity for deterministic sequences

lim
n→∞

xn = L

means that we can make sure that

|xn − L| < ε ⇐⇒ xn ∈ (L − ε, L + ε)

for any ε > 0, by choosing a large enough n.

� Example: xn =
(
1 + 1

n
)n, with limn→∞ xn = e ≈ 2.7183.

� Xn are random variables, cannot guarantee that |Xn − L| < ε.



Limit of a deterministic sequence



Convergence in probability

� The sequence X1,X2, . . . ,Xn converges in probability to the
constant c if “the distribution of Xn concentrates around
c” when n gets large.

� We can also have convergence in probability to a random
variable X instead of a constant; see the prequel book.



Convergence in probability

� 50% and 95% probability intervals.



Law of large numbers

� The law of large numbers tells us that the sample mean

X̄n =
1

n

n∑
i=1

Xi

converges in probability to the population mean µ = E(Xi)
as n → ∞.



Law of large numbers - widget

https://observablehq.com/@mattiasvillani/law-large-numbers#userinputs


Central limit theorem
� The central limit theorem tells us that the sample mean X̄n

converges in distribution to a normal distribution.

� Have to standardize to avoid a degenerate distribution:
X̄n − µ

σ√
n

=
√

n (X̄n − µ)

σ

� Formal version



Central limit theorem



Central limit theorem - widget

https://observablehq.com/@mattiasvillani/central-limit-theorem#dist_type


Transformations of random variables

� Known: the distribution of X is f (x)

� Wanted: the distribution of a transformed variable

Y = g(X)

� Why? We often need to transform the data.

� Bayes: we often need to transform parameters.

� Examples:
I Linear: Y = a + b · X
I Log: Y = log(X)

I Logit: Y = log
(

X
1−X

)



Transformations of random variables - example

� Example:

I pdf: fX (x) = 3x2 for 0 ≤ x ≤ 1

I cdf: FX (x) =
∫ x
0
3t2dt =

[
t3
]x
0
= x3

� Linear transformation: Y = 2 + 3X

� cdf of Y :

FY (y) = Pr(Y ≤ y) = Pr(2 + 3X ≤ y) = Pr
(

X ≤ y − 2

3

)
= FX

(
y − 2

3

)
=

(
y − 2

3

)3

� pdf of Y

fY (y) =
d

dy FY (y) =
d

dy FX

(
y − 2

3

)
= fX

(
y − 2

3

)
· 1
3

= 3

(
y − 2

3

)2

· 1
3
=

(
y − 2

3

)2

for 2 ≤ y ≤ 5



Transformations of random variables - example

� A little more general: linear transformation: Y = a + bX

� pdf of Y

FY (y) = Pr(Y ≤ y) = Pr(a + bX ≤ y) = Pr
(

X ≤ y − a
b

)
= FX

(y − a
b

)

� cdf of Y

fY (y) =
d

dy FY (y) =
d

dy FX

(y − a
b

)
= fX

(y − a
b

)
· 1b

� We computed the inverse transformation, i.e. solved for x

y = a + bx ⇐⇒ x =
y − a

b
� General: if g(x) is an invertible function

y = g(x) ⇐⇒ x = g−1(y)

where g−1(y) is the inverse function.



Transformations of random variables

� If Y = g(X) is piecewise monotone, handle each piece
separately and sum up.

� Example 3 on Wikipedia on transformations uses this on:
I X ∼ N(0, 1)
I Y = X2 which is monotone on (−∞, 0) and [0,∞)
I Result: Y ∼ χ2(ν = 1)

https://en.wikipedia.org/wiki/Random_variable#Example_3


Transformations of random variables - example

� Let X ∼ N(µ, σ2) with pdf

fX (x) =
1√
2πσ2

exp
(
− 1

2σ2
(x − µ)2

)
� Let Y = exp(X) with inverse transformation X = log(Y ) with

derivative
d

dy g−1(y) = d
dy log(y) = 1

y
� Then

fY (y) = fX (log(y)) · 1y =
1

y
√
2πσ2

exp
(
− 1

2σ2
(log(y)− µ)2

)
for y > 0.

� We have shown: if X ∼ N(µ, σ2) then

exp(X) ∼ LogNormal(µ, σ2)



Monte Carlo simulation

� Let X ∼ f (x).
� Compute E (g(X)) for some function Y = g(X) by simulation.
� Key idea: law of large numbers.
� Simulate x1, . . . xN

iid∼ f (x)

1

m

m∑
i=1

g(xi)
p→ E (g(X))

� Monte Carlo to compute tail probability Pr(X > c)

g(x) =
{
1 if x > c
0 if x ≤ c

E (g(X)) =

∫ ∞

−∞
g(x)f (x)dx =

∫ c

−∞
0 · f (x)dx +

∫ ∞

c
1 · f (x)dx

=

∫ ∞

c
f (x)dx = Pr(X > c)



Monte Carlo accuracy via the CLT

� Central limit theorem (informal)

1

m

m∑
i=1

g(xi)
approx∼ N

(
µ,

σ2

N

)
where

µ = E (g(X))

and
σ2 = V(g(X))


