Statistical Theory and Modeling (ST2601) Lecture 6 - The central theorems, transformations and Monte Carlo

Mattias Villani

Department of Statistics Stockholm University

Overview

- **Stochastic convergence**
- Law of large numbers
- Central limit theorem
- Transformations of random variables
- Monte Carlo simulation

Stochastic convergence - asymptotics

Performance of a statistical method in large samples $n \to \infty$.

Can be a good approximation for finite samples.

Sequence of random variables X_1, X_2, \ldots, X_n .

Example: sample mean

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

What happens with X_n as $n \to \infty$?

- Does it concentrate on a single value?
- ▶ Does the distribution of *X_n* stabilize?

Convergence in distribution

- The sequence $X_1, X_2, ..., X_n$ converges in distribution to the random variable X if "the cdf of X_n starts to look like the cdf of X" when n gets large.
- $F_n(x)$ is the cdf of X_n
- F(x) is the cdf of X

Definition. A sequence of random variables X_1, \ldots, X_n converges *in distribution* to the random variable X, if

 $F_n(x) \to F(x)$ as $n \to \infty$,

for all x where $F(\cdot)$ is continuous, where $F_n(x)$ and F(x) are the cumulative distribution functions (cdf) of X_n and X, respectively. We then write $X_n \stackrel{d}{\to} X$.

NegBin converges in distribution to Poisson

x

NegBin converges in distribution to Poisson

NegBin converges in distribution to Poisson

Student-*t* converges in distribution to N(0, 1)

Student-*t* converges in distribution to N(0, 1)

Student-*t* converges in distribution to N(0, 1)

Limit of a deterministic sequence

Mathematical limit at infinity for deterministic sequences

$$\lim_{n\to\infty}x_n=L$$

means that we can make sure that

$$|x_n - L| < \epsilon \qquad \iff \qquad x_n \in (L - \epsilon, L + \epsilon)$$

for any $\epsilon > 0$, by choosing a large enough *n*.

Example: $x_n = \left(1 + \frac{1}{n}\right)^n$, with $\lim_{n \to \infty} x_n = e \approx 2.7183$.

 X_n are random variables, cannot guarantee that $|X_n - L| < \epsilon$.

Limit of a deterministic sequence

Convergence in probability

The sequence $X_1, X_2, ..., X_n$ converges in probability to the constant c if "the distribution of X_n concentrates around c" when n gets large.

Definition. A sequence of random variables X_1, \ldots, X_n converges *in probability to a constant* c, *if for all* $\epsilon > 0$

$$\Pr(|X_n - c| > \epsilon) \to 0 \text{ as } n \to \infty.$$

We then write $X_n \xrightarrow{p} c$.

We can also have convergence in probability to a random variable X instead of a constant; see the prequel book.

Convergence in probability

Law of large numbers

The law of large numbers tells us that the sample mean

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

converges in probability to the population mean $\mu = \mathbb{E}(X_i)$ as $n \to \infty$.

Theorem 4 (law of large numbers). For independent random variables $X_1, X_2, ...$ with finite mean $\mu = \mathbb{E}(X)$ and finite variance we have

$$\bar{X}_n \stackrel{p}{\to} \mu$$

where \xrightarrow{p} denotes convergence in probability, i.e., for all $\epsilon > 0$

$$\Pr(|\bar{X}_n - \mu| \ge \epsilon) \to 0 \quad as \quad n \to \infty$$
 (5.3)

Law of large numbers - widget

Central limit theorem

The central limit theorem tells us that the sample mean \bar{X}_n converges in distribution to a normal distribution.

Theorem 6 (central limit theorem - informal version). Let X_1, X_2, \ldots be iid random variables with finite mean μ and variance σ^2 . Then for large n,

 $\bar{X}_n \stackrel{\text{approx}}{\sim} \mathcal{N}(\mu, \sigma^2/n)$

Have to **standardize** to avoid a degenerate distribution:

$$\frac{\bar{X}_n - \mu}{\frac{\sigma}{\sqrt{n}}} = \sqrt{n} \frac{(\bar{X}_n - \mu)}{\sigma}$$

Formal version

Theorem 5 (central limit theorem). Let $X_1, X_2, ...$ be iid random variables with finite mean μ and variance σ^2 . Then $\frac{\bar{X}_n - \mu}{\sigma / \sqrt{n}} \stackrel{d}{\to} N(0, 1),$ as $n \to \infty$, where $\stackrel{d}{\to}$ denotes convergence in distribution.

Central limit theorem

Central limit theorem - widget

Transformations of random variables

Known: the distribution of X is f(x)

Wanted: the distribution of a transformed variable

Y = g(X)

Why? We often need to transform the data.
Bayes: we often need to transform parameters.
Examples:

Linear: Y = a + b · X
Log: Y = log(X)

• Logit:
$$Y = \log\left(\frac{X}{1-X}\right)$$

Transformations of random variables - example

Example:

- ▶ **pdf**: $f_X(x) = 3x^2$ for $0 \le x \le 1$
- **cdf**: $F_X(x) = \int_0^x 3t^2 dt = [t^3]_0^x = x^3$

Linear transformation: Y = 2 + 3X

cdf of *Y*:

$$F_Y(y) = \Pr(Y \le y) = \Pr(2 + 3X \le y) = \Pr\left(X \le \frac{y - 2}{3}\right)$$
$$= F_X\left(\frac{y - 2}{3}\right) = \left(\frac{y - 2}{3}\right)^3$$

pdf of Y

$$f_Y(y) = \frac{\mathrm{d}}{\mathrm{d}y} F_Y(y) = \frac{\mathrm{d}}{\mathrm{d}y} F_X\left(\frac{y-2}{3}\right) = f_X\left(\frac{y-2}{3}\right) \cdot \frac{1}{3}$$
$$= 3\left(\frac{y-2}{3}\right)^2 \cdot \frac{1}{3} = \left(\frac{y-2}{3}\right)^2 \quad \text{for } 2 \le y \le 5$$

Transformations of random variables - example

A little more general: linear transformation: Y = a + bX
pdf of Y

$$F_Y(y) = \Pr(Y \le y) = \Pr(a + bX \le y) = \Pr\left(X \le \frac{y - a}{b}\right) = F_X\left(\frac{y - a}{b}\right)$$

cdf of *Y*

$$f_{Y}(y) = \frac{d}{dy}F_{Y}(y) = \frac{d}{dy}F_{X}\left(\frac{y-a}{b}\right) = f_{X}\left(\frac{y-a}{b}\right) \cdot \frac{1}{b}$$
We computed the **inverse transformation**, i.e. solved for *x*

$$y = a + bx \qquad \Longleftrightarrow \qquad x = \frac{y-a}{b}$$

General: if g(x) is an invertible function

$$y = g(x) \qquad \Longleftrightarrow \qquad x = g^{-1}(y)$$

where $g^{-1}(y)$ is the inverse function.

Transformations of random variables

Transforming variables - change-of-variable formula

Let
$$X \sim f_X(x)$$
 and

$$Y = g(X)$$

an invertible monotonically increasing or decreasing transformation with continuous derivative and inverse transformation

$$X = g^{-1}(Y).$$

The density of Y is then

$$f_{Y}(y) = f_{X}\left(g^{-1}(y)\right) \left| \frac{\mathrm{d}}{\mathrm{d}y}g^{-1}(y) \right|$$

If Y = g(X) is piecewise monotone, handle each piece separately and sum up.

Example 3 on Wikipedia on transformations uses this on:

$$\blacktriangleright X \sim N(0,1)$$

▶ $Y = X^2$ which is monotone on $(-\infty, 0)$ and $[0, \infty)$

• Result:
$$Y \sim \chi^2(\nu = 1)$$

Transformations of random variables - example

Let $X \sim N(\mu, \sigma^2)$ with pdf

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$$

Let $Y = \exp(X)$ with inverse transformation $X = \log(Y)$ with derivative

$$\frac{\mathrm{d}}{\mathrm{d}y}g^{-1}(y) = \frac{\mathrm{d}}{\mathrm{d}y}\log(y) = \frac{1}{y}$$

Then

$$f_{Y}(y) = f_{X}(\log(y)) \cdot \frac{1}{y} = \frac{1}{y\sqrt{2\pi\sigma^{2}}} \exp\left(-\frac{1}{2\sigma^{2}}(\log(y) - \mu)^{2}\right)$$

for y > 0. We have shown: if $X \sim N(\mu, \sigma^2)$ then

 $\exp(X) \sim \text{LogNormal}(\mu, \sigma^2)$

Monte Carlo simulation

Let $X \sim f(x)$.

Compute $\mathbb{E}(g(X))$ for some function Y = g(X) by simulation.

- Key idea: law of large numbers.
- Simulate $x_1, \ldots x_N \stackrel{\text{iid}}{\sim} f(x)$

$$\frac{1}{m}\sum_{i=1}^{m}g(x_i)\stackrel{p}{\rightarrow}\mathbb{E}\left(g(X)\right)$$

Monte Carlo to compute tail probability Pr(X > c)

$$g(x) = \begin{cases} 1 & \text{if } x > c \\ 0 & \text{if } x \le c \end{cases}$$

$$\mathbb{E}\left(g(X)\right) = \int_{-\infty}^{\infty} g(x)f(x)dx = \int_{-\infty}^{c} 0 \cdot f(x)dx + \int_{c}^{\infty} 1 \cdot f(x)dx$$
$$= \int_{c}^{\infty} f(x)dx = \Pr(X > c)$$

Monte Carlo accuracy via the CLT

Central limit theorem (informal)

$$\frac{1}{m}\sum_{i=1}^{m}g(x_i) \overset{\text{approx}}{\sim} N\left(\mu, \frac{\sigma^2}{N}\right)$$

where

$$\mu = \mathbb{E}\left(g(X)\right)$$

and

$$\sigma^2 = \mathbb{V}(\mathbf{g}(\mathbf{X}))$$