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Overview

B Maximum likelihood
B Sampling distributions
B Bias-variance trade-off
B Consistency

B Sufficiency



Probability vs Inference

B Probability theory: given a distribution with parameter ¢
what are the properties of random variables (data)?

» X ~ Pois(A). Then: E(X) = X and V(X) = .
» What is Pr(X > 4) for a given \?
> If Xq,..., X, ~ Pois()\) for a given ), what is E(X,)?

B Inference/Learning: given observed data xi, ..., X,, which
distribution and parameter value 6 generated the data?

» Point estimation \ = x

» Uncertainty quantification:

m standard errors S(\)
m confidence intervals

. T o
m Bayesian posterior distributions U



Probability vs Inference

H Probability theory: Models and Parameters = Data.

B Inference: Data = Models and Parameters ~~ Reality

I Often described as (particularly in finite populations):
l Probability theory: Population = Sample

H Inference: Sample = Population

Probability/Sampling

Inference



The big picture of Statistics

Complex reality
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Probability model

L
w
\ X1,Xs,..., Xn ~ N(p,0?)




The likelihood function

Probability distribution for the dataset: p(Xi, Xo, ..., Xp|0).
Probability for the observed data p(xi, xa, . .., xs|0).

Inference: given observed data xi, ..., x,, what is a “good”
value for 07

Good values for § <= high probability for the observed data.

Bad values for § <= low probability for the observed data.

B Find parameter value 6 that maximizes the likelihood

function
p(Xla e ,Xn|9)



Different notations for the likelihood function

B p(xi,...,x|0) [My Bayesian &8 preference]
B L(x1,...,x,|0) [L instead of p is for Likelihood]
mL(o) [Hiding the data. But convenient.]

B L(x1,...,xn;0) [Well, now we're just doing random symbols?]



Likelihood function - bit by bit

eBay auction data with 1000 auctions for collectors’ coins.
We focus here on the number of bidders in the auctions.

Use only the n = 550 auctions with smallest reservation prices.
Count data: let's try a Poisson!

Bookval MajorBlem IDSeller Sealed NegFeedback ReservePriceFrac NBidders  FinalPrice
1 18.95 0 0 0 0 0 0 0.368865435356201 2 155
2 435 0 0 1 0 0 0 0.229885057471264 6 M
3 245 0 0 1 0 0 0 1.02 1 24.99
4 345 1 0 0 0 0 0 0.721739130434783 1 249
5 99.5 0 0 0 0 0 1 0.167236180904523 4 72.65
020
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https://github.com/mattiasvillani/BayesianLearningBook/raw/main/data/ebaybids/ebaybids.csv

Likelihood function for the first observation y;

H First data point: y; = 2.
Il Probability of observing y; = 2 in the Poisson model?
M Poisson probability function:

Mg - AZe=A

p(Y1=y|A) = il o
M Let's try with A = 3.
» Mathematically:
326_3
p(Y1=2A=3)= T 0.2240418
» In R: dpois(x = 2, lambda = 3)
B For A =2:
» Mathematically:
92 =2
p(Y1=2A=2)= T 0.2706706

» In R: dpois(x = 2, lambda = 2)



Likelihood function for the first observation y;

B So, A\ = 2 gave a higher probability to the data y; =2
compared to A = 3.

B How about other X values? Let's do them alll

Likelihood function for y, =2




Likelihood function for y; and y,

B Data: y; =2 and y» = 6.

B Likelihood function is the joint probability

Wie™ W2eA
nt

p(Yi=2,Ys=6)) "EP p(Yy = 2/\) - p(Ya = 6]A) =

M For\=2
2272 9672

o2l 6l

p(Y1=2,Y2=6|\=2) =

M Let R do the work

dpois(x = 2, lambda = 2)*dpois(x = 6, lambda = 2) = 0.003256114
Likelihood for y, =2 and y, =6
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Likelihood function for y,, ..., yig

M Likelihood function using first ten observations

10
indep
p(Yi=y1,...,Yi0=y10l\) = HP(Y;P\)
i=1
Likelihood function first ten obs
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M Likelihood function for all n = 550 observations
n
pYi=y1,..., Yo =yalN) = [[ p(ri]A)
i=1

B Product of 1000 probabilities is a tiny number. Let's do logs.



Likelihood concentrates with more data

1.00 |
"
— ) — 2
= ]
0.75 } — = 100
— = 500
Z 050+
~
0.25}
0.00 p —=t—




Log-likelihood function for two observations
B Log-Likelihood function using first two observations

log p(Y1 =2, Y2 = 6|\) =logp(Y1 = 2[A) + log p(Y2 = 6]))

Likelihood function first two obs Log-Likelihood function first two obs
0.015

= 0.010

logp(y|
logp(y | A)

0.005

0.000

I Since log(x) is monotonically increasing: the X that
maximizes the likelihood also maximizes the log-likelihood.

B Logs simplifies the derivative needed to find the maximum.

B Maximum likelihood estimator of \: the value of A that
maximizes the (log-)likehood function.



Log-likelihood function for all observations

B Log-likelihood for all n data points

(X)) =log L(A Zlogp (yil\)

I Poisson distribution
Nie™A
PyilA) = — and  logp(yi|A\) = yilog A— X —log(y;!)

I+

M Log-likelihood for iid Poisson model

Zlogp yilA) = Z (yilog A — A —log(y!))

i=1

= logz\Zyi —nA— Zlog(y;!)
i=1 i=1

H Since 27:1 Yi = ny we can write

LX) =log A ny —n\— Zlog(y,-!)
i=1



Log-likelihood function for all observations
B Log-likelihood for iid Poisson model

(A) =log - ny —nX\ — Zlog(y,-!)

i=1

Log-Likelihood function all obs

-3.00x10°

)

= _6.00x10*f

1:1000
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log p(y

—1.20x10*

-1.50x10% f




The MLE in the iid Poisson model

B Maximum likelihood estimate (MLE) of X

~

Ay = argmax £(\)
A

B Finding a maximum of a function? Set first derivate to zero
and solve for A
N =0

I Check for (local) maximum by checking second derivative
EII(S\ML) <0

B When ¢/(\) = 0 cannot be solved mathematically. Use
computer. More later!



Log-likelihood

has solution
AmL =y
Second derivative shows that this indeed a (local) maximizer

d ny
" [r— / = ——
L (A)—d)\ﬁ(/\) 2 <0

for all \ and therefore also at A

For a dataset with ¥y = 0 the second derivative test is
inconclusive. Why?



The MLE in the iid Exponential model

B Model .
Yi,..., Y id Expon(3)

W Likelihood (densities because of continuous random variables!)
Lo = [Trons) = [[ 2/ = Lehwin - Lo
i=1 i=1 B B ek
B Log-likelihood

) = log L(3) = ~nlogf —

r@)=-2+2 9

_ﬁi B2
—n—l—%:O

) )
By =y



The MLE in the iid Exponential model

I First derivative

I Second derivative

@ Evaluate at BML =y

A n 2ny n 2n n
" (Bwmr) = 2 Y = —

— ——=—=<0
y3 o yr oy y?

since n > 0 and y > 0 (exponential is used for positive data).



Sampling distribution of an estimator

M An estimator 6 depends on the sample

~

0n(X1,..., Xn)

B Sampling distribution of 6: how 6 varies from sample to
sample.

I Confidence intervals are based on this.

B Asymptotic sampling distribution for 0,: the sampling
distribution when n is large (n — 00).

B Central limit theorem: the asymptotic sampling distribution
of the sample mean X, is normal.



Bias-variance trade-off

B Unbiased estimator

B Bias

B Mean square error (MSE)

E(d — 6) = V(6) + (bias(é))2

Unbiased - low variance Biased - low variance Unbiased - large variance




Law of large numbers

Xn 2 7

An estimator 0 is consistent for a population parameter 6 if
0, >0

which, by convergence in probability, means that for any ¢ > 0

Pr(|0,— 6] >¢) -0 asn— oo

Result: An unbiased estimator 6 is consistent if

V(0,) =0 asn— oo



Invariance of the MLE: Let  be the MLE for 6 and g(0) a
function of the parameter. Then, the MLE for g(#) is g(Omr)-
Useful: obtain the MLE 6 and pop that into the function g(6)

Example 1: Pois()\) data. MLE of e* is e = ¢,
Example 2:
Common model for income distribution:
Xiyeooy Xn i LogNormal (1, 0%)

The Gini coefficient 0 < G < 1 is a measure of income
inequality. For LogNormal data it can be shown that

G=20(c/V2) -1

where ®(z) is the cdf for the standard normal distribution.
MLE for the Gini coefficient

G = 28(m/V2) — 1



Sufficiency (not exam material)

B A statistic T = t(Xy,...,X,) is a compression of the data
into some lower-dimensional quantity.

Examples: sample mean X, or the sample variance s°.

A statistic T = t(Xy,...,X,) is sufficient for a parameter 6 if

Pr(Xi,...,Xo|T = t,0) = Pr(Xi,..., Xs| T = t)

l A sufficient statistic captures all the information in the
data about the parameter 6.

B Factorization criterion. A statistic T is sufficient for 0 if
and only if the likelihood can be written

L(x1,...,xnl0) = g(t,0)h(x1,...,%n),

where h(xi, ..., xp) is a function that does not involve 6.



Assume that a data compression T = t(X1,...,X,) is
sufficient for 8. We observe T = t.

Since T is sufficient for 0, the log-likelihood can be written
log L(0) = log g(t,0) + log h(xi,...,xn)

The maximum likelihood estimator @, is obtained by solving

d log g(t,0)

d
log L(0) = W

d6
Enough to only keep the compressed data when finding éML.

Useful for online learning with streaming data.



Likelihood when Y4, ..., Y, S Pois()\):

T NiemA  A\WemnA

L()‘):H yi! = HP—N’i! :g(tag)'h(}/lw'w)/n)

where t =y,
) 1

yYn) = =y
! H7:1 yi!

so y is a sufficient statistic for the parameter .

g(y,0) = \Ve ™ and h(yi, ...

The sample size n is a known constant, not a random variable.



