Statistical Theory and Modeling (ST2601) Lecture 7 - Point estimation and Maximum likelihood

Mattias Villani

Department of Statistics Stockholm University

Overview

- Maximum likelihood
- **Sampling distributions**
- Bias-variance trade-off
- **Consistency**
- **Sufficiency**

Probability vs Inference

Probability theory: given a distribution with parameter θ what are the properties of random variables (data)?

▶
$$X \sim \operatorname{Pois}(\lambda)$$
. Then: $\mathbb{E}(X) = \lambda$ and $\mathbb{V}(X) = \lambda$.

- ▶ What is Pr(X > 4) for a given λ ?
- ▶ If $X_1, \ldots, X_n \sim \text{Pois}(\lambda)$ for a given λ , what is $\mathbb{E}(\bar{X}_n)$?

Inference/Learning: given observed data x_1, \ldots, x_n , which distribution and parameter value θ generated the data?

- **Point estimation** $\hat{\lambda} = \bar{x}$
- Uncertainty quantification:
 - standard errors $\mathbb{S}(\hat{\lambda})$
 - confidence intervals
 - Bayesian posterior distributions ^C

Probability vs Inference

Probability theory: Models and Parameters \implies Data.

Inference: Data ⇒ Models and Parameters → Reality

Often described as (particularly in finite populations):

Probability theory: Population \implies Sample

Inference: Sample \implies Population

The big picture of Statistics

The likelihood function

- Probability distribution for the dataset: p(X₁, X₂,..., X_n|θ).
 Probability for the observed data p(x₁, x₂,..., x_n|θ).
- Inference: given observed data x₁,..., x_n, what is a "good" value for θ?
 - Good values for $\theta \iff$ high probability for the observed data.
 - Bad values for $\theta \iff$ low probability for the observed data.

Find parameter value θ that maximizes the likelihood function

$$p(x_1,\ldots,x_n|\theta)$$

Different notations for the likelihood function

p(x₁,...,x_n|θ) [My Bayesian preference]
L(x₁,...,x_n|θ) [L instead of p is for Likelihood]
L(θ) [Hiding the data. But convenient.]
L(x₁,...,x_n;θ) [Well, now we're just doing random symbols?]

Likelihood function - bit by bit

<u>eBay auction data</u> with 1000 auctions for collectors' coins.
We focus here on the **number of bidders** in the auctions.
Use only the n = 550 auctions with smallest reservation prices.
Count data: let's try a Poisson!

	BookVal	MinorBlem	MajorBlem	PowerSeller	IDSeller	Sealed	NegFeedback	ReservePriceFrac	NBidders	FinalPrice
1	18.95	0	0	0	0	0	0	0.368865435356201	2	15.5
2	43.5	0	0	1	0	0	0	0.229885057471264	6	41
3	24.5	0	0	1	0	0	0	1.02	1	24.99
4	34.5	1	0	0	0	0	0	0.721739130434783	1	24.9
5	99.5	0	0	0	0	0	1	0.167236180904523	4	72.65

Likelihood function for the first observation y₁

First data point: $y_1 = 2$.

Probability of observing $y_1 = 2$ in the Poisson model?

Poisson probability function:

$$p(Y_1 = y_1|\lambda) = \frac{\lambda^{y_1} e^{-\lambda}}{y_1!} = \frac{\lambda^2 e^{-\lambda}}{2!}$$

Let's try with $\lambda = 3$.

Mathematically:

$$p(Y_1 = 2|\lambda = 3) = \frac{3^2 e^{-3}}{2!} = 0.2240418$$

▶ In R: dpois(x = 2, lambda = 3)
 ■ For λ = 2:

Mathematically:

$$p(Y_1 = 2|\lambda = 2) = \frac{2^2 e^{-2}}{2!} = 0.2706706$$

 \blacktriangleright In R: dpois(x = 2, lambda = 2)

Likelihood function for the first observation y₁

So, λ = 2 gave a higher probability to the data y₁ = 2 compared to λ = 3.

How about other λ values? Let's do them all!

Likelihood function for y_1 and y_2

Data:
$$y_1 = 2$$
 and $y_2 = 6$.
Likelihood function is the joint probability
 $p(Y_1 = 2, Y_2 = 6|\lambda) \stackrel{\text{indep}}{=} p(Y_1 = 2|\lambda) \cdot p(Y_2 = 6|\lambda) = \frac{\lambda^{y_1}e^{-\lambda}}{y_1!} \cdot \frac{\lambda^{y_2}e^{-\lambda}}{y_2!}$
For $\lambda = 2$
 $p(Y_1 = 2, Y_2 = 6|\lambda = 2) = \frac{2^2e^{-2}}{2!} \cdot \frac{2^6e^{-2}}{6!}$
Let R do the work
dpois (x = 2, lambda = 2)*dpois (x = 6, lambda = 2) = 0.003256114
Likelihood for $y_1 = 2$ and $y_2 = 6$

Likelihood function for y_1, \ldots, y_{10}

Likelihood function using first ten observations

$$p(Y_1 = y_1, \ldots, Y_{10} = y_{10}|\lambda) \stackrel{\text{indep}}{=} \prod_{i=1}^{10} p(y_i|\lambda)$$

Likelihood function for all n = 550 observations

$$p(Y_1 = y_1, \dots, Y_n = y_n | \lambda) = \prod_{i=1}^n p(y_i | \lambda)$$

Product of 1000 probabilities is a tiny number. Let's do logs.

Likelihood concentrates with more data

Log-likelihood function for two observations

Log-Likelihood function using first two observations

 $\log p(Y_1 = 2, Y_2 = 6|\lambda) = \log p(Y_1 = 2|\lambda) + \log p(Y_2 = 6|\lambda)$

Since log(x) is monotonically increasing: the λ that maximizes the likelihood also maximizes the log-likelihood.

Logs simplifies the derivative needed to find the maximum.

Maximum likelihood estimator of λ: the value of λ that maximizes the (log-)likehood function.

Log-likelihood function for all observations

Log-likelihood for all *n* data points

$$\ell(\lambda) = \log L(\lambda) = \sum_{i=1}^{n} \log p(y_i|\lambda)$$

Poisson distribution

 $p(y_i|\lambda) = \frac{\lambda^{y_i} e^{-\lambda}}{y_i!}$ and $\log p(y_i|\lambda) = y_i \log \lambda - \lambda - \log(y_i!)$

Log-likelihood for iid Poisson model

$$\ell(\lambda) = \sum_{i=1}^{n} \log p(y_i|\lambda) = \sum_{i=1}^{n} (y_i \log \lambda - \lambda - \log(y_i!))$$
$$= \log \lambda \sum_{i=1}^{n} y_i - n\lambda - \sum_{i=1}^{n} \log(y_i!)$$

Since $\sum_{i=1}^{n} y_i = n\bar{y}$ we can write

$$\ell(\lambda) = \log \lambda \cdot n\bar{y} - n\lambda - \sum_{i=1}^{n} \log(y_i!)$$

Log-likelihood function for all observations

Log-likelihood for iid Poisson model

$$\ell(\lambda) = \log \lambda \cdot n\bar{y} - n\lambda - \sum_{i=1}^{n} \log(y_i!)$$

The MLE in the iid Poisson model

Maximum likelihood estimate (MLE) of λ

$$\hat{\lambda}_{ML} = \operatorname*{argmax}_{\lambda} \ell(\lambda)$$

Finding a maximum of a function? Set first derivate to zero and solve for λ

$$\ell'(\lambda) = 0$$

Check for (local) maximum by checking second derivative

$$\ell''(\hat{\lambda}_{\textit{ML}}) < 0$$

When $\ell'(\lambda) = 0$ cannot be solved mathematically. Use computer. More later!

The MLE in the iid Poisson model

Log-likelihood

$$\ell(\lambda) = \log \lambda \cdot n\bar{y} - n\lambda - \sum_{i=1}^{n} \log(y_i!)$$

$$\ell'(\lambda) = \frac{ny}{\lambda} - n = 0$$

has solution

$$\hat{\lambda}_{ML} = \bar{y}$$

Second derivative shows that this indeed a (local) maximizer

$$\ell''(\lambda) = \frac{\mathrm{d}}{\mathrm{d}\lambda}\ell'(\lambda) = -\frac{n\bar{y}}{\lambda^2} < 0$$

for all λ and therefore also at $\hat{\lambda}_{ML}$.

For a dataset with $\bar{y} = 0$ the second derivative test is inconclusive. Why?

The MLE in the iid Exponential model

Model

$$Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} \operatorname{Expon}(\beta)$$

Likelihood (densities because of continuous random variables!)

$$L(\beta) = \prod_{i=1}^{n} f(y_{i}|\beta) = \prod_{i=1}^{n} \frac{1}{\beta} e^{-y_{i}/\beta} = \frac{1}{\beta^{n}} e^{-\frac{1}{\beta} \sum_{i=1}^{n} y_{i}} = \frac{1}{\beta^{n}} e^{-\frac{n\overline{y}}{\beta}}$$

Log-likelihood

$$\ell(\beta) = \log L(\beta) = -n \log \beta - \frac{n\bar{y}}{\beta}$$
$$\ell'(\beta) = -\frac{n}{\beta} + \frac{n\bar{y}}{\beta^2} = 0$$
$$-n + \frac{n\bar{y}}{\beta} = 0$$

SO

$$\hat{\beta}_{ML} = \bar{y}$$

The MLE in the iid Exponential model

First derivative

$$\ell'(\beta) = -\frac{n}{\beta} + \frac{n\bar{y}}{\beta^2}$$

Second derivative

$$\ell''(\beta) = \frac{n}{\beta^2} - \frac{2n\bar{y}}{\beta^3}$$

Evaluate at $\hat{\beta}_{ML} = \bar{y}$

$$\ell''(\hat{\beta}_{ML}) = \frac{n}{\bar{y}^2} - \frac{2n\bar{y}}{\bar{y}^3} = \frac{n}{\bar{y}^2} - \frac{2n}{\bar{y}^2} = -\frac{n}{\bar{y}^2} < 0$$

since n > 0 and $\bar{y} > 0$ (exponential is used for positive data).

Sampling distribution of an estimator

An estimator $\hat{\theta}$ depends on the sample

 $\hat{\theta}_n(X_1,\ldots,X_n)$

- **Sampling distribution** of $\hat{\theta}$: how $\hat{\theta}$ varies from sample to sample.
- **Confidence intervals** are based on this.
- **Asymptotic sampling distribution** for $\hat{\theta}_n$: the sampling distribution when *n* is large $(n \to \infty)$.
- **Central limit theorem**: the asymptotic sampling distribution of the sample mean \bar{X}_n is normal.

Bias-variance trade-off

Unbiased estimator

Bias

$$\operatorname{bias}(\hat{\theta}) = \mathbb{E}(\hat{\theta}) - \theta$$

Mean square error (MSE)

$$\mathbb{E}(\hat{\theta} - \theta)^2 = \mathbb{V}(\hat{\theta}) + \left(\mathrm{bias}(\hat{\theta})\right)^2$$

Unbiased - low variance

Biased - low variance

Unbiased - large variance

Consistent estimator

Law of large numbers

$$\bar{X}_n \stackrel{p}{\to} \mu$$

An estimator $\hat{\theta}$ is **consistent** for a population parameter θ if $\hat{\theta}_n \xrightarrow{p} \theta$

which, by convergence in probability, means that for any $\epsilon > 0$

$$\Pr(|\hat{\theta}_n - \theta| > \epsilon) \to 0 \quad \text{as } n \to \infty$$

Result: An unbiased estimator $\hat{\theta}$ is consistent if

$$\mathbb{V}(\hat{\theta}_n) \to 0$$
 as $n \to \infty$

Properties of the MLE

Invariance of the MLE: Let θ̂ be the MLE for θ and g(θ) a function of the parameter. Then, the MLE for g(θ) is g(θ̂_{ML}).
 Useful: obtain the MLE θ̂ and pop that into the function g(θ)

$$\widehat{g(\theta)}_{ML} = g(\hat{\theta}_{ML})$$

Example 1: $Pois(\lambda)$ data. MLE of e^{λ} is $e^{\hat{\lambda}_{ML}} = e^{\bar{y}}$. Example 2:

Common model for income distribution:

$$X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{LogNormal}(\mu, \sigma^2)$$

► The Gini coefficient 0 ≤ G ≤ 1 is a measure of income inequality. For LogNormal data it can be shown that

$$G = 2\Phi(\sigma/\sqrt{2}) - 1$$

where $\Phi(z)$ is the cdf for the standard normal distribution.

MLE for the Gini coefficient

$$\hat{\mathbf{G}}_{\mathbf{ML}} = 2\Phi(\hat{\sigma}_{\mathbf{ML}}/\sqrt{2}) - 1$$

Sufficiency (not exam material)

- A statistic $T = t(X_1, ..., X_n)$ is a compression of the data into some lower-dimensional quantity.
- Examples: sample mean \bar{X}_n or the sample variance s^2 .
- A statistic $T = t(X_1, \ldots, X_n)$ is sufficient for a parameter θ if

$$\Pr(X_1,\ldots,X_n|T=t,\theta)=\Pr(X_1,\ldots,X_n|T=t)$$

- A sufficient statistic captures all the information in the data about the parameter θ .
- **Factorization criterion**. A statistic T is sufficient for θ if and only if the likelihood can be written

$$L(x_1,\ldots,x_n|\theta)=g(t,\theta)h(x_1,\ldots,x_n),$$

where $h(x_1, \ldots, x_n)$ is a function that does not involve θ .

Sufficiency and the MLE

Assume that a data compression $T = t(X_1, ..., X_n)$ is sufficient for θ . We observe T = t.

Since T is sufficient for θ , the log-likelihood can be written

$$\log L(\theta) = \log g(t,\theta) + \log h(x_1,\ldots,x_n)$$

I The maximum likelihood estimator $\hat{\theta}_{ML}$ is obtained by solving

$$\frac{\mathrm{d}}{\mathrm{d}\theta}\log L(\theta) = \frac{\mathrm{d}}{\mathrm{d}\theta}\log g(t,\theta)$$

Enough to only keep the compressed data when finding
 θ̂_{ML}.
 Useful for online learning with streaming data.

Sufficiency in the iid Poisson model

Likelihood when $Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} \operatorname{Pois}(\lambda)$:

$$L(\lambda) = \prod_{i=1}^{n} \frac{\lambda^{y_i} e^{-\lambda}}{y_i!} = \frac{\lambda^{n\bar{y}} e^{-n\lambda}}{\prod_{i=1}^{n} y_i!} = g(t,\theta) \cdot h(y_1,\ldots,y_n)$$

where $t = \bar{y}$,

 $g(\bar{y}, \theta) = \lambda^{n\bar{y}} e^{-n\lambda}$ and $h(y_1, \dots, y_n) = \frac{1}{\prod_{i=1}^n y_i!}$

so \bar{y} is a sufficient statistic for the parameter λ .

The sample size *n* is a known constant, not a random variable.