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Overview

� Maximum likelihood

� Sampling distributions

� Bias-variance trade-off

� Consistency

� Sufficiency



Probability vs Inference

� Probability theory: given a distribution with parameter θ
what are the properties of random variables (data)?

I X ∼ Pois(λ). Then: E(X) = λ and V(X) = λ.

I What is Pr(X > 4) for a given λ?

I If X1, . . . ,Xn ∼ Pois(λ) for a given λ, what is E(X̄n)?

� Inference/Learning: given observed data x1, . . . , xn, which
distribution and parameter value θ generated the data?

I Point estimation λ̂ = x̄
I Uncertainty quantification:

standard errors S(λ̂)
confidence intervals
Bayesian posterior distributions



Probability vs Inference

� Probability theory: Models and Parameters =⇒ Data.

� Inference: Data =⇒ Models and Parameters  Reality

� Often described as (particularly in finite populations):

� Probability theory: Population =⇒ Sample

� Inference: Sample =⇒ Population

Population Sample

Inference

Probability/Sampling



The big picture of Statistics
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The likelihood function

� Probability distribution for the dataset: p(X1,X2, . . . ,Xn|θ).
� Probability for the observed data p(x1, x2, . . . , xn|θ).

� Inference: given observed data x1, . . . , xn, what is a “good”
value for θ?

� Good values for θ ⇐⇒ high probability for the observed data.

� Bad values for θ ⇐⇒ low probability for the observed data.

� Find parameter value θ that maximizes the likelihood
function

p(x1, . . . , xn|θ)



Different notations for the likelihood function

� p(x1, . . . , xn|θ) [My Bayesian preference]

� L(x1, . . . , xn|θ) [L instead of p is for Likelihood]

� L(θ) [Hiding the data. But convenient.]

� L(x1, . . . , xn; θ) [Well, now we’re just doing random symbols?]



Likelihood function - bit by bit

� eBay auction data with 1000 auctions for collectors’ coins.
� We focus here on the number of bidders in the auctions.
� Use only the n = 550 auctions with smallest reservation prices.
� Count data: let’s try a Poisson!

https://github.com/mattiasvillani/BayesianLearningBook/raw/main/data/ebaybids/ebaybids.csv


Likelihood function for the first observation y1
� First data point: y1 = 2.
� Probability of observing y1 = 2 in the Poisson model?
� Poisson probability function:

p(Y1 = y1|λ) =
λy1e−λ

y1!
=

λ2e−λ

2!

� Let’s try with λ = 3.
I Mathematically:

p(Y1 = 2|λ = 3) =
32e−3

2!
= 0.2240418

I In R: dpois(x = 2, lambda = 3)
� For λ = 2:

I Mathematically:

p(Y1 = 2|λ = 2) =
22e−2

2!
= 0.2706706

I In R: dpois(x = 2, lambda = 2)



Likelihood function for the first observation y1

� So, λ = 2 gave a higher probability to the data y1 = 2
compared to λ = 3.

� How about other λ values? Let’s do them all!



Likelihood function for y1 and y2
� Data: y1 = 2 and y2 = 6.
� Likelihood function is the joint probability

p(Y1 = 2,Y2 = 6|λ) indep
= p(Y1 = 2|λ) · p(Y2 = 6|λ) = λy1e−λ

y1!
· λ

y2e−λ

y2!
� For λ = 2

p(Y1 = 2,Y2 = 6|λ = 2) =
22e−2

2!
· 2

6e−2

6!
� Let R do the work
dpois(x = 2, lambda = 2)*dpois(x = 6, lambda = 2) = 0.003256114



Likelihood function for y1, . . . , y10
� Likelihood function using first ten observations

p(Y1 = y1, . . . ,Y10 = y10|λ)
indep
=

10∏
i=1

p(yi |λ)

� Likelihood function for all n = 550 observations

p(Y1 = y1, . . . ,Yn = yn|λ) =
n∏

i=1

p(yi |λ)

� Product of 1000 probabilities is a tiny number. Let’s do logs.



Likelihood concentrates with more data



Log-likelihood function for two observations

� Log-Likelihood function using first two observations

log p(Y1 = 2,Y2 = 6|λ) = log p(Y1 = 2|λ) + log p(Y2 = 6|λ)

� Since log(x) is monotonically increasing: the λ that
maximizes the likelihood also maximizes the log-likelihood.

� Logs simplifies the derivative needed to find the maximum.

� Maximum likelihood estimator of λ: the value of λ that
maximizes the (log-)likehood function.



Log-likelihood function for all observations
� Log-likelihood for all n data points

`(λ) = log L(λ) =
n∑

i=1

log p(yi |λ)

� Poisson distribution

p(yi |λ) =
λyi e−λ

yi !
and log p(yi |λ) = yi logλ−λ− log(yi !)

� Log-likelihood for iid Poisson model

`(λ) =
n∑

i=1

log p(yi |λ) =
n∑

i=1

(yi logλ− λ− log(yi !))

= logλ
n∑

i=1

yi − nλ−
n∑

i=1

log(yi !)

� Since
∑n

i=1 yi = nȳ we can write

`(λ) = logλ · nȳ − nλ−
n∑

i=1

log(yi !)



Log-likelihood function for all observations

� Log-likelihood for iid Poisson model

`(λ) = logλ · nȳ − nλ−
n∑

i=1

log(yi !)



The MLE in the iid Poisson model

� Maximum likelihood estimate (MLE) of λ

λ̂ML = argmax
λ

`(λ)

� Finding a maximum of a function? Set first derivate to zero
and solve for λ

`′(λ) = 0

� Check for (local) maximum by checking second derivative

`′′(λ̂ML) < 0

� When `′(λ) = 0 cannot be solved mathematically. Use
computer. More later!



The MLE in the iid Poisson model

� Log-likelihood

`(λ) = logλ · nȳ − nλ−
n∑

i=1

log(yi !)

`′(λ) =
nȳ
λ

− n = 0

has solution
λ̂ML = ȳ

� Second derivative shows that this indeed a (local) maximizer

`′′(λ) =
d

dλ
`′(λ) = −nȳ

λ2
< 0

for all λ and therefore also at λ̂ML.
� For a dataset with ȳ = 0 the second derivative test is

inconclusive. Why?



The MLE in the iid Exponential model

� Model
Y1, . . . ,Yn

iid∼ Expon(β)

� Likelihood (densities because of continuous random variables!)

L(β) =
n∏

i=1

f (yi |β) =
n∏

i=1

1

β
e−yi/β =

1

βn e− 1
β

∑n
i=1 yi =

1

βn e− nȳ
β

� Log-likelihood

`(β) = log L(β) = −n logβ − nȳ
β

`′(β) = − n
β
+

nȳ
β2

= 0

−n +
nȳ
β

= 0

so
β̂ML = ȳ



The MLE in the iid Exponential model

� First derivative
`′(β) = −n

β
+

nȳ
β2

� Second derivative

`′′(β) =
n
β2

− 2nȳ
β3

� Evaluate at β̂ML = ȳ

`′′(β̂ML) =
n
ȳ2

− 2nȳ
ȳ3

=
n
ȳ2

− 2n
ȳ2

= − n
ȳ2

< 0

since n > 0 and ȳ > 0 (exponential is used for positive data).



Sampling distribution of an estimator

� An estimator θ̂ depends on the sample

θ̂n(X1, . . . ,Xn)

� Sampling distribution of θ̂: how θ̂ varies from sample to
sample.

� Confidence intervals are based on this.

� Asymptotic sampling distribution for θ̂n: the sampling
distribution when n is large (n → ∞).

� Central limit theorem: the asymptotic sampling distribution
of the sample mean X̄n is normal.



Bias-variance trade-off
� Unbiased estimator

E(θ̂) = θ
Unbiased Biased

true sample 1 sample 2

� Bias
bias(θ̂) = E(θ̂)− θ

� Mean square error (MSE)

E(θ̂ − θ)2 = V(θ̂) +
(

bias(θ̂)
)2

Unbiased - low variance Biased - low variance

true sample 1 sample 2

Unbiased - large variance



Consistent estimator

� Law of large numbers
X̄n

p→ µ

� An estimator θ̂ is consistent for a population parameter θ if

θ̂n
p→ θ

which, by convergence in probability, means that for any ε > 0

Pr(|θ̂n − θ| > ε) → 0 as n → ∞

� Result: An unbiased estimator θ̂ is consistent if

V(θ̂n) → 0 as n → ∞



Properties of the MLE
� Invariance of the MLE: Let θ̂ be the MLE for θ and g(θ) a

function of the parameter. Then, the MLE for g(θ) is g(θ̂ML).
� Useful: obtain the MLE θ̂ and pop that into the function g(θ)

ĝ(θ)ML = g(θ̂ML)

� Example 1: Pois(λ) data. MLE of eλ is eλ̂ML = e ȳ .
� Example 2:

I Common model for income distribution:

X1, . . . ,Xn
iid∼ LogNormal(µ, σ2)

I The Gini coefficient 0 ≤ G ≤ 1 is a measure of income
inequality. For LogNormal data it can be shown that

G = 2Φ(σ/
√
2)− 1

where Φ(z) is the cdf for the standard normal distribution.
I MLE for the Gini coefficient

ĜML = 2Φ(σ̂ML/
√
2)− 1



Sufficiency (not exam material)

� A statistic T = t(X1, . . . ,Xn) is a compression of the data
into some lower-dimensional quantity.

� Examples: sample mean X̄n or the sample variance s2.
� A statistic T = t(X1, . . . ,Xn) is sufficient for a parameter θ if

Pr(X1, . . . ,Xn|T = t, θ) = Pr(X1, . . . ,Xn|T = t)

� A sufficient statistic captures all the information in the
data about the parameter θ.

� Factorization criterion. A statistic T is sufficient for θ if
and only if the likelihood can be written

L(x1, . . . , xn|θ) = g(t, θ)h(x1, . . . , xn),

where h(x1, . . . , xn) is a function that does not involve θ.



Sufficiency and the MLE

� Assume that a data compression T = t(X1, . . . ,Xn) is
sufficient for θ. We observe T = t.

� Since T is sufficient for θ, the log-likelihood can be written

log L(θ) = log g(t, θ) + log h(x1, . . . , xn)

� The maximum likelihood estimator θ̂ML is obtained by solving

d
dθ

log L(θ) = d
dθ

log g(t, θ)

� Enough to only keep the compressed data when finding θ̂ML.

� Useful for online learning with streaming data.



Sufficiency in the iid Poisson model

� Likelihood when Y1, . . . ,Yn
iid∼ Pois(λ):

L(λ) =
n∏

i=1

λyi e−λ

yi !
=

λnȳe−nλ∏n
i=1 yi !

= g(t, θ) · h(y1, . . . , yn)

where t = ȳ ,

g(ȳ , θ) = λnȳe−nλ and h(y1, . . . , yn) =
1∏n

i=1 yi !

so ȳ is a sufficient statistic for the parameter λ.

� The sample size n is a known constant, not a random variable.


