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Overview

� Vectors and matrices - minimal intro to linear algebra

� Linear regression in vector form

� Multivariate normal distribution



Goals of the lecture

� Linear regression in vector form

y = Xβ + ε, ε ∼ N(0, σ2In)

� Least squares estimate of regression coefficients

β̂ = (X>X)−1X>y

� Multivariate normal distribution x ∼ N(µ,Σ) with pdf

f (x) = |2πΣ|−1/2 exp
(
−1

2
(x − µ)>Σ−1(x − µ)

)
� What’s the deal with all the bold letters? Linear algebra.

� Worth the trip. Very useful for linear regression and more.



Vectors

� Linear algebra: a vector is an object containing real numbers

a =


1
3
5
3


� Common default: a vector is a column vector.
� The transpose of a vector is a row vector

a> =
(
1 3 5 3

)
� R:

> a = c(1,2,5,3)
> t(a) # transpose



Visualizing vectors in 2D
� 2D vector. Directed line (arrow) in R2.

a =

(
a1
a2

)
=

(
1
2

)



Visualizing vectors in 3D
� 3D vector. Directed line (arrow) in R3.

a =

 a1
a2
a3

 =

 3
2
2





Vector addition and subtraction

� Adding two vectors with the same number of elements

a =

 a1
a2
a3

 , b =

 b1
b2
b3

 a + b =

 a1 + b1
a2 + b2
a3 + b3


� Substracting a vector from another vector

a − b =

 a1 − b1
a2 − b2
a3 − b3


� Both these operations can be visualized geometrically.



Vector multiplication

� In R a*b will do elementwise multiplication

a ∗ b =

 a1b1
a2b2
a3b3


� In a%*%b will compute the dot product

a · b = a>b =
(

a1 a2 a3
) b1

b2
b3

 = a1b1 + a2b2 + a3b3

� In general the dot product is

a · b =

n∑
i=1

aibi



Orthogonal vectors
� Two vectors are orthogonal if their dot product is zero

a · b = 0

� Example in 3D:

a =

 1
2
1

 , b =

 −6
2
2





Matrices

� A matrix is like a table, it has rows and columns

X =

(
2 3 1
3 2 0

)
� This is a 2× 3 matrix since it has 2 rows and 3 columns.
� View a p × q matrix as q column vector stacked horizontally

X =

 | | |
x1 x2 · · · xq
| | |


� Example: the following three vectors give the matrix above

x1 =

(
2
3

)
, x2 =

(
3
2

)
, x3 =

(
1
0

)
> x1 = c(2,3); x2 = c(3,2); x3=c(1,0);
> cbind(x1,x2,x3) # column bind. Also rbind exists



Matrix-Vector multiplication

� A is an m × n matrix A
� b is an n-element vector
� Matrix-vector product: dot product of each row in A with b

A
(m×n)

=


− a>

1 −
− a>

2 −
...

− a>
m −

 b
(n×1)

=

 b1
...

bn



Ab =


a>
1 b

a>
2 b
...

a>
mb





Matrix-Matrix multiplication

� Matrix product of A and B: pairwise dot product of a row in
A and a column in B

A
(m×n)

=


− a>

1 −
− a>

2 −
...

− a>
m −

 B
(n×r)

=

 | | |
b1 b2 · · · b r
| | |



AB =


a>
1 b1 a>

1 b2 · · · a>
1 b r

a>
2 b1 a>

2 b2 · · · a>
2 b r

...
... . . . ...

a>
mb1 a>

mb2 · · · a>
mb r





Matrix-Matrix multiplication

� Example

A =

(
2 3
3 2

)
, B =

(
1 2
0 1

)

AB =


(

2 3
)( 1

0

) (
2 3

)( 2
1

)
(

3 2
)( 1

0

) (
3 2

)( 2
1

)


=

(
2 · 1 + 3 · 0 = 2 2 · 2 + 3 · 1 = 7
3 · 1 + 2 · 0 = 3 3 · 2 + 2 · 1 = 8

)

> A = matrix(c(2,3,3,2), 2, 2, byrow = TRUE)
> B = matrix(c(1,2,0,1), 2, 2, byrow = TRUE)
> A%*%B # A*B would do elementwise multiplication



Linear regression - one observation
� One observation

y = β1x1 + . . .+ βpxp + ε

� In vector form

y =
(

x1 · · · xp
)︸ ︷︷ ︸

x>

 β1
...
βp


︸ ︷︷ ︸

β

+ ε = x>β + ε

� Add a one for the intercept

(
1 x1 · · · xp

)


β0

β1

...
βp


� The ith observation

yi = x>
i β + εi



Linear regression - all observations

� The ith observation

yi = x>
i β + εi

� All i = 1, . . . n observations stacked under each other
y1
y2
...

yn

 =


x>
1 β

x>
2 β
...

x>
n β

+


ε1
ε2
...
εn


� With matrix-vector multiplication

x>
1 β

x>
2 β
...

x>
n β

 =


x>
1

x>
2
...

x>
n


︸ ︷︷ ︸

X

β = Xβ

� X is the n × p covariate matrix with n observations as rows.



Linear regression
� Linear regression in vector form

y = Xβ + ε

� Least squares estimate = maximum likelihood estimate

β̂ = (X>X)−1X>y

� We now understand that

X>X =


∑n

i=1 x2
1i

∑n
i=1 x1ix2i · · ·

∑n
i=1 x1ixpi∑n

i=1 x1ix2i
∑n

i=1 x2
2i · · ·

∑n
i=1 x2ixpi

...
... . . . ...∑n

i=1 x1ixpi
∑n

i=1 x2ixpi · · ·
∑n

i=1 x2
pi



X>y =


∑n

i=1 x1i yi∑n
i=1 x2i yi

...∑n
i=1 xpi yi


� But what does (X>X)−1 mean? Inverse of a matrix?



Matrix inverse

� The inverse of regular number x is x−1 which is defined by

x−1x = xx−1 =
x
x = 1

� Inverse of p × p matrix A is denoted by A−1 and defined by

A−1A = AA−1 = Ip

where Ip is the p × p identity matrix

Ip =


1 0 · · · 0
0 1 · · · 0
...

... . . . ...
0 0 · · · 1


> A = matrix(c(2,3,3,2), 2, 2, byrow = TRUE)
> invA = solve(A)
> invA %*% A # returns the identity matrix



Least squares estimate
� Least squares minimizes the sum of squared residuals

Q(β0, β1) =

n∑
i=1

(yi − ŷi)
2 =

n∑
i=1

(yi − β0 − β1xi)
2

� Find minimum of Q(β0, β1) by solving system of equations
∂Q(β0, β1)

∂β0
=

n∑
i=1

2(yi − β0 − β1xi)(−1) = 0

∂Q(β0, β1)

∂β1
=

n∑
i=1

2(yi − β0 − β1xi)(−xi) = 0

gives the so called normal equations
nȳ = nβ0 + β1nx̄

n∑
i=1

xiyi = β0nx̄ + β1

n∑
i=1

x2
i

� With solution
β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2 β̂0 = ȳ − β̂1x̄



Least squares estimate - vector form

� Sum of squared residuals in vector notation

Q(β) =

n∑
i=1

(yi − x>
i β)2 = (y − Xβ)>(y − Xβ)

� Set gradient vector equal to zero
∂

∂β
Q(β) = −2X>(y − Xβ) = 0

gives the normal equations

X>Xβ = X>y

� Multiply both sides with the matrix inverse of X>X(
X>X

)−1
X>Xβ =

(
X>X

)−1
X>y

gives the least squares solution

β̂ = (X>X)−1X>y



Gradients
� Bivariate function z = f (x , y).
� Partial derivative in x : change in x , holding y constant

fx(x , y) =
∂

∂x f (x , y)

� Partial derivative in y : change in y , holding x constant

fy (x , y) =
∂

∂y f (x , y)

� Gradient is the vector of partial derivatives(
fx(x , y)
fy (x , y)

)
� General f (x1, . . . , xp) or f (x). Gradient is p-dim vector

∂

∂x =


∂

∂x1 f (x)
...

∂
∂xp

f (x)





Gradients



Determinant of a square matrix

� Let A be a 2× 2 matrix

A =

(
a11 a12
a21 a22

)
� The determinant is the number

|A| = a11a22 − a12a21

� Better intuition soon on why the determinant is important.

� Formulas for larger matrices are complicated. Use a computer.

> A = matrix(c(2,3,3,2), 2, 2)
> det(A) # returns -5



Bivariate normal distribution

� X and Y follow a bivariate normal distribution

(X ,Y ) ∼ N(µx , µy , σx , σy , ρ)

with joint pdf

f (x , y) =
1

2πσxσy
√

1− ρ2

× exp
(

−
1

2(1− ρ2)

[( x − µx

σx

)2
+
( y − µy

σy

)2
− 2ρ

( x − µx

σx

)( y − µy

σy

)])

� Parameters:
I µx the mean of X
I µy the mean of Y
I σx the standard deviation of X
I σy the standard deviation of Y
I ρ the correlation between X and Y



Bivariate normal distribution



Bivariate normal - widget

https://observablehq.com/@mattiasvillani/multivariate-normal-distribution


Multivariate normal distribution

� x = (X1,X2, . . . ,Xp)
> and follows a multivariate normal

distribution
x ∼ N(µ,Σ)

with joint pdf

f (x) = 1

(2π)p/2 |Σ|−1/2 exp
(
−1

2
(x − µ)>Σ−1(x − µ)

)
� Clash in notation: small bold letters for random vectors.
� Parameters when p = 2:

I Mean vector
µ =

(
µ1

µ2

)
I Covariance matrix

Σ =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)



Multivariate normal distribution

� Determinant measures total variance

|Σ| = σ2
1σ

2
2(1− ρ2)

I No correlation: |Σ| = σ2
1σ

2
2

I Strong positive correlation: |Σ| small
I Strong negative correlation: |Σ| small

� The quadratic form

(x − µ)>Σ−1(x − µ)

is the vector version of a squared standardized variable(
X − µ

σ

)2


