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Overview

B Vectors and matrices - minimal intro to linear algebra
B Linear regression in vector form

B Multivariate normal distribution



Goals of the lecture

B Linear regression in vector form
y=XB+e, e~ N(0,0I,)
B Least squares estimate of regression coefficients
B=(X'x)XTy
B Multivariate normal distribution x ~ N(u, ) with pdf
F(x) = 222 2 exp (=500 - )2 ) )
B What's the deal with all the bold letters? Linear algebra.

B Worth the trip. Very useful for linear regression and more.



Vectors

B Linear algebra: a vector is an object containing real numbers

wW Ot W

B Common default: a vector is a column vector.

@ The transpose of a vector is a row vector
a'=(1353)

B R:

> a = c¢(1,2,5,3)
> t(a) # transpose



Visualizing vectors in 2D

B 2D vector. Directed line (arrow) in R2,

=(5)-0
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Visualizing vectors in 3D

M 3D vector. Directed line (arrow) in R3.
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Adding two vectors with the same number of elements

31 b1 31 + bl
a=| a |, b=| b at+b=| a+ b
as b3 as + b3

Substracting a vector from another vector

ar— b
a—»b= 32—b2
as — bz

Both these operations can be visualized geometrically.



Vector multiplication

M In R a*b will do elementwise multiplication

31b1
axb= 32b2
33b3

M In a%*%b will compute the dot product

by
a-b:aTb:(al an 33) by = a1by + asby + agbs
bs

B In general the dot product is

a-b= En:a;b,'
i=1



Orthogonal vectors

B Two vectors are orthogonal if their dot product is zero

a-b=0

B Example in 3D:



A matrix is like a table, it has and

2 3 1
X‘<320>

This is a 2 x 3 matrix since it has 2 rows and 3 columns.

View a p X g matrix as g column vector stacked horizontally

Example: the following three vectors give the matrix above

w=(3) == (2) m= ()

> x1 = ¢(2,3); x2 = ¢(3,2); x3=c(1,0);
> cbind(x1,x2,x3)



Matrix-Vector multiplication

B Aisan m x n matrix A
B b is an n-element vector
B Matrix-vector product: dot product of each row in A with b

-
— a —
k by
_| T 2 - b = | :
(mxn) (nx1)
S b
a/b
a, b
Ab = i
a'b



Matrix product of A and B: pairwise dot product of a row in
A and a column in B

~al -
~al - | |
A = . B = bl b2 br
(mxn) : (nxr) ‘ ’ ’
- al -
alTbl alTbg alTbr
AB asb; a by --- a)b,
a;,bl a;,bg e a,,Tqb,



Matrix-Matrix multiplication

B Example
2 3 1 2
A:(3 2)’ BZ(() 1)
. 1 2
) ()
AB =
1 . 2
o (3) o)
2.113.0-2 2.243.1=7
“\31+2.0=3 3.2+2.1=38
> A = matrix(c(2,3,3,2), 2, 2, byrow = TRUE)
> B = matrix(c(1,2,0,1), 2, 2, byrow = TRUE)

> AY*YB # A*B would do elementwise multiplication



Linear regression - one observation

@ One observation
y=p1xi+ ...+ Bpxp+¢

B In vector form

B
yz(xl xp) : +e=x'B+¢
—
xT BP
N—_——
B
B Add a one for the intercept
Bo
B
( 1 X1 N Xp ) :
Bp

B The jth observation
yi=x]B+ei



The ith observation

T
Yi=x; B+ei
All i =1,...n observations stacked under each other
i X1Tﬁ €1
Y2 3 €2
Yn XIIB €n
With matrix-vector multiplication
T T
x%_,B x%_
X, B X3
Tl=] 7 |B=xs
x, Xy
X

X is the n x p covariate matrix with n observations as rows.



Linear regression

B Linear regression in vector form
y=XB+e
Il Least squares estimate = maximum likelihood estimate
B=(XTX)"'XTy
B We now understand that

Z;lefi Z;’:nlxll'XZf ZZ:leiXPi
DA XUXe Dol Xar ot Dy XoiXpi

X'X=
n s n RV no 2
Zi:l X1iXpi Z,’:l X2iXpi Zi:l Xpi
Z;,:l X1iYi
Do X2iYi
XTy = .
it Xpii

B But what does (X X)~! mean? Inverse of a matrix? &



Matrix inverse

B The inverse of regular number x is x~! which is defined by

W Inverse of p x p matrix A is denoted by A~! and defined by
AlA=AA"1=1,

where I, is the p x p identity matrix

10 --- 0
01 --- 0
I, =
00 --- 1

> A = matrix(c(2,3,3,2), 2, 2, byrow = TRUE)
> invA = solve(A)
> invA %*Y A # returns the identity matrix



Least squares minimizes the sum of squared residuals

n n

Q(Bo, B1) =D (vi—3) =Y _(yi — Bo — Bixi)?

i=1 i=1
Find minimum of Q(fo, 1) by solving system of equations

0Q(bo, b1)
850 1) 22 — Bo — Bixi)(—=1) =0

9Q(Bo, B1)
8501 . 22 — Bo — Bixi)(=x) =0

gives the so called normal equations

ny = nfo + B1nx

inyi = Bonx + p1 ZX,Q
i=1 i=1
With solution

B = Y (i = X)(yi —¥)

Z?:1(Xi - 2)2

Bo =y — pix



Sum of squared residuals in vector notation

n

QB)=> (yi—x'B8)?=(y—XB) (y — XB)

i=1

Set gradient vector equal to zero

0 B T B
%Q(ﬁ) =—2X (y—-XpB)=0

gives the normal equations
X'Xg=X"y
Multiply both sides with the matrix inverse of XX
(xTx) TXTXB = (xTx) TXTy
gives the least squares solution

B=(X"X)"'XTy



Gradients

I Bivariate function z = f(x, y).
B Partial derivative in x: change in x, holding y constant

0
f;( ) = 7f )
(x,y) = 5 f(x.y)
B Partial derivative in y: change in y, holding x constant
0
f;’(Xay) = aiyf(x,}/)

B Gradient is the vector of partial derivatives

(£0)

W General f(xi,...,xp) or f(x). Gradient is p-dim vector
5 e f (%)
x|,
O\ A f



Gradients

— of/ox




Determinant of a square matrix

[l Let A be a 2 X 2 matrix
A— ( air a2 >
dg1 a2
B The determinant is the number
|A| = a11a22 — a12a01
[ Better intuition soon on why the determinant is important.

B Formulas for larger matrices are complicated. Use a computer.

> A = matrix(c(2,3,3,2), 2, 2)
> det(A) # returns -5



Bivariate normal distribution

B X and Y follow a bivariate normal distribution

(Xa Y) ~ N(#Xaﬂyvo-xa vap)
with joint pdf
-
2noxoy/1 — p?

con (a5 (5 2 5]

M Parameters:
> (x the mean of X

f(x,y) =

» i, the mean of Y

» o, the standard deviation of X
» o, the standard deviation of Y
>

p the correlation between X and Y



Bivariate normal distribution
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Bivariate normal - widget



https://observablehq.com/@mattiasvillani/multivariate-normal-distribution

Multivariate normal distribution

B ox = (X, X, ... ,Xp)T and follows a multivariate normal
distribution

x ~ N(p,X)
with joint pdf

1

f(x) = (om)P? 13| ~/2 exp <—%(x —p) 2 (x - u))

I Clash in notation: small bold letters for random vectors.

_ 241
# ( iz )
» Covariance matrix

> O'% pPO102
pPO102 (T%

B Parameters when p = 2:

» Mean vector



Multivariate normal distribution

I Determinant measures total variance
_ 22 2
|3| = oio3(1 - p7)

» No correlation: |X| = o703
» Strong positive correlation: |X| small

> Strong negative correlation: |X| small

B The quadratic form

(x—p)'=7 (x—p)

is the vector version of a squared standardized variable

(1)




