
Statistical Theory and Modeling (ST2601)
Lecture 9 - Statistical Information. Numerical

Maximum Likelihood.

Mattias Villani

Department of Statistics
Stockholm University

mattiasvillani.com @matvil @matvil mattiasvillani

https://mattiasvillani.com
https://twitter.com/matvil
https://fosstodon.org/@matvil
https://github.com/mattiasvillani


Overview

� The information in a likelihood function

� Maximum likelihood estimator in large samples

� Numerical maximum likelihood



The Big Picture
� Four stages of learning modern statistical learning.
1 Understand probability and statistical models.
2 Mathematical derivation of the MLE

I Write up the log-likelihood `(θ)
I Calculate derivative `′(θ)
I Solve for the MLE from `′(θ) = 0

3 Numerical optimization for the MLE
I Code up the log-likelihood `(θ)
I Use automatic differentiation to find `′(θ)
I Solve for the MLE using a numerical optimizer.

4 Probabilistic programming languages (PPL) (Stan etc)
I Express the statistical model, almost like in textbooks.
I Let the framework to all the work for you.

� Learning 1 → 2 → 3→ 4 makes Stage 4 understandable and
explainable to clients, helps in debugging, allows you to go
beyond models in manual.

� Stage 3 gives freedom when PPL doesn’t do what you need.



iid Poisson model in Stan
� IID Poisson model

Y1, . . . ,YN |λ
iid∼ Pois(λ)



Negative Binomial regression in Turing.jl



How informative is my data about the parameters?

� Probabilistic model p(Y1, . . . ,Yn|θ) with parameter θ.

� Example: iid Poisson model:

Y1, . . . ,YN |λ
iid∼ Pois(λ)

� Likelihood function (assuming independent data)

L(θ) = p(y1, . . . , yn|θ) =
n∏

i=1

p(yi |θ)

� Log-likelihood function

`(θ) = log L(θ)

� Observed information: Given a dataset y1, . . . , yn, how
much information is there about θ?

� Expected information: Before collecting data, how
information can I expected to get about θ?



Observed information

� Given a dataset, how much information is there about θ?
� How peaked is the likelihood function?



Observed information
� The second derivative measures the curvature of a function

f ′′(x) = d2

dx2
f (x) = d

dx f ′(x)

� Observed information from n observations
Jn(θ̂) = −`′′(θ̂)

where θ̂ is the maximum likelihood estimate (MLE).
� Often written as

d2

dθ2
`(θ)

∣∣∣∣
θ=θ̂

� Why a negative sign? The second derivative is negative at the
maximum. We like information to be a positive number.

� Why the log-likelihood function? Suggested by likelihood
theory. Log-likelihood is approx quadratic in large samples.



Second derivative measures curvature

https://observablehq.com/@mattiasvillani/second-derivative-measures-the-curvature-of-a-function


Observed information in the iid Poisson model
� IID Poisson model

Y1, . . . ,YN |λ
iid∼ Pois(λ)

� Log-likelihood

`(λ) =

n∑
i=1

log p(yi |λ)

� Log density for ith observation

log p(yi |λ) = log
(
λyi e−λ

yi !

)
= yi log(λ)− λ− log(yi !)

� Log-likelihood

`(λ) =

n∑
i=1

(yi log(λ)− λ− log(yi !))

= log(λ)
n∑

i=1

yi − nλ−
n∑

i=1

log(yi !)



Observed information in the iid Poisson model
� Log-likelihood (constants in orange)

`(λ) = log(λ)
n∑

i=1

yi − nλ−
n∑

i=1

log(yi !)

� First derivative

`′(λ) =

∑n
i=1 yi
λ

− n

� Solving `′(λ) = 0 gives the MLE λ̂ =
∑n

i=1 yi
n = ȳ .

� Second derivative

`′′(λ) = −
∑n

i=1 yi
λ2

= −nȳ
λ2

� Observed information

Jn(λ̂) = −`′′(λ̂) =
nȳ
λ̂2

=
nȳ
ȳ2

=
n
ȳ

� Information grows linearly in sample size n. Always true for iid
.



Expected information

� The observed information varies from dataset to dataset.

� Expected information: Before collecting data, how
information can I expected to get about θ?

� The expected information over all possible datasets

In(θ) = E (Jn(θ))

Jn(θ) is the observed information from dataset (Y1, . . . ,Yn).

� Also called the Fisher information.

� Designing experiments and data collection (active learning).

� Also in sampling distribution of the MLE in large samples.



Likelihood and Information - widget

https://observablehq.com/@mattiasvillani/likelihood-and-information


Maximum likelihood estimator in large samples

� Sampling distribution of the MLE in large datasets

θ̂n
approx∼ N

(
θ,

1

In(θ)

)
for large n

� MLE is asymptotically unbiased (as n → ∞).

� Asymptotically efficient (lowest possible variance among
unbiased estimators. Cramér-Rao lower bound).

� In large samples In(θ) ≈ Jn(θ̂), so we can use Jn(θ̂).

� The beauty: a computer can compute θ̂n and Jn(θ̂n).



Maximum likelihood in large samples - example

� MLE sampling distribution for large n

θ̂n
approx∼ N

(
θ,

1

Jn(θ̂n)

)
for large n

� IID Poisson model

λ̂n(Y1, . . . ,Yn)
approx∼ N

(
λ,

1

Jn(λ̂n)

)
= N

(
λ,

1

n/ȳ

)
= N

(
λ,

ȳ
n

)
� In this case we can compute the true sampling variance

V(λ̂) = V(Ȳ ) =
V(Yi)

n =
λ

n

since variance = mean for Poisson.



Multi-parameter case

� Multi-parameter models: p(y1, . . . , yn|θ) where
θ = (θ1, . . . , θp)

> is a vector with parameters.
� Example: Negative binomial with θ = (r , µ)>

Y1, . . . ,YN |r , µ
iid∼ NegBin(r , µ)

� Example: Two-dimensional observed information matrix )

∂2`(θ)

∂θ∂θ> =

(
∂2

∂θ21
`(θ1, θ2)

∂2

∂θ1∂θ2
`(θ1, θ2)

∂2

∂θ2∂θ1
`(θ1, θ2)

∂2

∂θ22
`(θ1, θ2)

)

� Sampling distribution of the MLE in large samples

θ̂n
approx∼ N

(
θ,J −1

n (θ̂n)
)

for large n

where N is the multivariate normal distribution and J −1
n (θ̂n)

is the matrix inverse of Jn(θ̂n).



Numerical optimization
� Find the maximum of a function f (x)

xmax = arg max
x∈X

f (x)

involves solving for x in f ′(x) = 0.
� Gradient ascent: find xmax by iterating until convergence:

xk+1 = xk + γ︸︷︷︸
learning rate

· f ′(xk)︸ ︷︷ ︸
gradient

� Newton-Raphson: find xmax by iterating until convergence:

xk+1 = xk − f ′(xk)

f ′′(xk)

� Multi-dimensional MLE solves `′(θ) = 0. Newton-Raphson:

θk+1 = θk + J −1(θk)︸ ︷︷ ︸
inverse hessian

· f ′(θk)︸ ︷︷ ︸
gradient

� Inverse Hessian cheaply computed from gradients (BFGS).



Finding the maximum



Gradient ascent - good learning rate



Gradient ascent - too small learning rate



Gradient ascent - too large learning rate



Gradient ascent convergence



Newton-Raphson



Newton-Raphson convergence



Optim in R


