Statistical Theory and Modeling (ST2601)

Lecture 9 - Statistical Information. Numerical

Maximum Likelihood.

Mattias Villani

Department of Statistics
Stockholm University

£
Sw
e~
=
K/

//1//7 NN

))
&).
w

[ITREN

mattiasvillani.com “ @matvil @ ©matvil

O mattiasvillani

https://mattiasvillani.com
https://twitter.com/matvil
https://fosstodon.org/@matvil
https://github.com/mattiasvillani

Overview

B The information in a likelihood function
B Maximum likelihood estimator in large samples

B Numerical maximum likelihood

The Big Picture

|

Four stages of learning modern statistical learning.
Understand probability and statistical models.

Mathematical derivation of the MLE
» Write up the log-likelihood £(9)
» Calculate derivative ¢/(6)
» Solve for the MLE from ¢/(6) =0

Numerical optimization for the MLE
» Code up the log-likelihood £(6)
» Use automatic differentiation to find ¢/(6)
» Solve for the MLE using a numerical optimizer.

Probabilistic programming languages (PPL) (Stan etc)
» Express the statistical model, almost like in textbooks.
> Let the framework to all the work for you.
Learning 1 — 2 — 3— 4 makes Stage 4 understandable and
explainable to clients, helps in debugging, allows you to go
beyond models in manual.
Stage 3 gives freedom when PPL doesn’t do what you need.

iid Poisson model in Stan

I 11D Poisson model
Yi,..., YulA % Pois(\)

data {
int<lower = 0> N;
int<lower = 0> y[N];
}
parameters {
real<lower = 0> lambda;
}
model {
lambda ~ gamma(1, 1);
y ~ poisson(lambda);
}
generated quantities {

int<lower = 0> y_tilde = poisson_rng(lambda);

Negative Binomial regression in Turing.jl

Negative binomial regression
@model function negbinomialReg(y, X, T, Ho, Oo)
p = size(X,2)
B ~ filldist(Normal(@, t), p)
A = exp.(X*B)
) ~ LogNormal(po, Oo)
n = length(y)
for 1 in 1:n
y[i] ~ NegativeBinomial({, /(¢ + A[i]))
end
end

How informative is my data about the parameters?
B Probabilistic model p(Yi,..., Y,|0) with parameter 6.
B Example: iid Poisson model:
Yi, ..., Yuld X Pois())

W Likelihood function (assuming independent data)

L) = p(y1,-.-,ynl0) = HP(Yi|9)

B Log-likelihood function
£(0) =log L(0)

B Observed information: Given a dataset y1,...,y,, how
much information is there about 67

B Expected information: Before collecting data, how
information can | expected to get about 67

Observed information

B Given a dataset, how much information is there about 67
B How peaked is the likelihood function?

1.00 }
n =
—
e — 10

0.75 —n = 100
—— 550

Z 050+

0.25} K

(O S ———————— (i m————

The second derivative measures the curvature of a function
d2 d
1" _ . _ S
Fix) = 72fx) = 7 F(x)

Observed information from n observations
In(B) = —"(6)

where 6 is the maximum likelihood estimate (MLE).
Often written as

& (0

w9,

Why a negative sign? The second derivative is negative at the
maximum. We like information to be a positive number.

Why the log-likelihood function? Suggested by likelihood
theory. Log-likelihood is approx quadratic in large samples.

Second derivative measures curvature

16

3

https://observablehq.com/@mattiasvillani/second-derivative-measures-the-curvature-of-a-function

Observed information in the iid Poisson model

B [ID Poisson model
Yi, ..., Yuld % Pois(\)
M Log-likelihood

(A =) log p(yilA)
i=1

H Log density for ith observation

Nie™
log p(yi|A) = log (5) = yilog(A) — XA — log(yi!)

Yi:

B Log-likelihood

n

() = (vilog(h) — A —log(yih))

i=1

= log(A) Zy,— —n\— Zlog(y,-!)
i=1 i=1

Observed information in the iid Poisson model

B Log-likelihood (constants in orange)

= log(A Zy,—n)\ Z

B First derivative
n
E/)\ — Zi:l Yi _
() = =iz
W Solving £/(A) = 0 gives the MLE A = ==Y — 3.
B Second derivative
1 _ 27:1 i ny
FN=""%"="%
B Observed information
2 Q ny ny
Tn(A) = —"(3 ==
M=-rh=53=2=1
B Information grows linearly in sample size n. Always true for iid

Expected information

The observed information varies from dataset to dataset.

Expected information: Before collecting data, how
information can | expected to get about 67

The expected information over all possible datasets

Zn(0) = E (7n(0))
Jn(0) is the observed information from dataset (Yi,...,Y}).
Also called the Fisher information.

Designing experiments and data collection (active learning).

l Also in sampling distribution of the MLE in large samples.

Likelihood and Information - widget

The likelihood function Approx sampling distribution of ML estimator
W

https://observablehq.com/@mattiasvillani/likelihood-and-information

Maximum likelihood estimator in large samples

B Sampling distribution of the MLE in large datasets

6, PR N (9, %w)) for large n

B MLE is asymptotically unbiased (as n — o).

B Asymptotically efficient (lowest possible variance among
unbiased estimators. Cramér-Rao lower bound).

W In large samples Z,(0) ~ J,(0), so we can use J,(0).

B The beauty: a computer can compute 6, and jn(é,,). ®

Maximum likelihood in large samples - example

B MLE sampling distribution for large n

A a) rox 1
6, PR N @, ——— | for large n
Tn(0n)

M 11D Poisson model

SAZIIIR 75 R Vil VI (5 W S By Y ()\, i_) Y (A,
Tn(An) n/y

H In this case we can compute the true sampling variance

S <

)

V() =V(Y) = V(:") = %

since variance = mean for Poisson.

Multi-parameter case

B Multi-parameter models: p(y1,...,yn|0) where
0= (64,..., GP)T is a vector with parameters.

W Example: Negative binomial with @ = (r, ;)"
Yoo, YN‘UH %j NegBin(rau)

B Example: Two-dimensional observed information matrix)

825(9) . 392 €(91, 92) 69 59 6(91, 02)

B Sampling distribution of the MLE in large samples

0, TR N (0, j,fl(é,,)> for large n
where N is the multivariate normal distribution and J71(6,)
is the matrix inverse of J,(0,).

Find the maximum of a function f(x)

Xmax = arg max f(x)
xXeX

involves .
Gradient ascent: find xy.x by iterating until convergence:
!
X1 =Xk + v - F(x)
~— ——
learning rate gradient

Newton-Raphson: find xyax by iterating until convergence:

f'(xk)
Xk+1 = Xk — 77 (xe)

Multi-dimensional MLE solves ¢'(8) = 0. Newton-Raphson:
01 =0k + T (k) -F'(61)
——— ——

inverse hessian gradient

Inverse Hessian cheaply computed from gradients (BFGS).

f(z) =1+ 222 — (4/3)x3

xmax

0.0

1.0 1.5

Gradient ascent - good learning rate

— f(=)

® iteration 0
iteration 1
iteration 2
iteration 3
iteration 4

1.4 1 1 1 1

0.7 0.8 0.9 1.0

Gradient ascent - too small learning rate

v = 0.05
1.7

=

1.4 1 1 1 1 1
0.7 0.8 0.9 1.0 1.1

Gradient ascent - too large learning rate

v = 0.45
— f(z)
® iteration 0
181 | @ iteration1
@ iteration 2
@ iteration 3
L7y iteration 4 —
B iteration 5 — /,é\
%1.6 v f(y)
1.5 :
v ()
1.4 - - : . .
0.7 0.8 0.9 1.0 1.1

Gradient ascent convergence

0.7

5 10 15 20 25 30

iteration, k

Newton-Raphson

f(x
20 ()
f(z)
——iteration 0 Ty Ty
——jteration 1
——iteration 2 '1/
1.5} |—iteration 3
5
N~—
Sy
1.0
0.5 1 1 1

0.0 0.5 1.0 1.5

Newton-Raphson convergence

20

15

z,=0.7

Ty =95

z, =20
- — — Tpax
7?7%# 1 1 1 1 1 1
0 1 4 5 6 8 9 10

iteration, k

Optim in R

Function to maximized. Depends on parameter a
myFunc <- function(x, a){

funcval = 1 - (x/a-2)"2

return (funcval)

}

Run optim

a=1

initval <- c(3) # initial guess

OptimResults <- optim(initVal, myFunc, gr=NULL, a,
method=c("BFGS"),
control=1list(fnscale=-1),
hessian=TRUE)

OptimResultsSpar # maximizer
OptimResultsSvalue # maximum function value
OptimResultsShessian # second derivative

